These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 2239350)
1. Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man. Ren JM; Broberg S; Sahlin K; Hultman E Acta Physiol Scand; 1990 Jul; 139(3):467-74. PubMed ID: 2239350 [TBL] [Abstract][Full Text] [Related]
2. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation. Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789 [TBL] [Abstract][Full Text] [Related]
3. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. Bangsbo J; Graham TE; Kiens B; Saltin B J Physiol; 1992; 451():205-27. PubMed ID: 1403811 [TBL] [Abstract][Full Text] [Related]
4. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. Hultman E; Sjöholm H J Physiol; 1983 Dec; 345():525-32. PubMed ID: 6663511 [TBL] [Abstract][Full Text] [Related]
5. Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans. Hultman E; Spriet LL J Physiol; 1986 May; 374():493-501. PubMed ID: 3746702 [TBL] [Abstract][Full Text] [Related]
6. Regulation of glycogenolysis in human skeletal muscle. Ren JM; Hultman E J Appl Physiol (1985); 1989 Dec; 67(6):2243-8. PubMed ID: 2606829 [TBL] [Abstract][Full Text] [Related]
7. Skeletal muscle glucolysis, glycogenolysis and glycogen phosphorylase during electrical stimulation in man. Ren JM; Chasiotis D; Bergström M; Hultman E Acta Physiol Scand; 1988 May; 133(1):101-7. PubMed ID: 3227898 [TBL] [Abstract][Full Text] [Related]
8. Glycogen and lactate metabolism during low-intensity exercise in man. Nordheim K; Vøllestad NK Acta Physiol Scand; 1990 Jul; 139(3):475-84. PubMed ID: 2239351 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic ATP provision, glycogenolysis and glycolysis in rat slow-twitch muscle during tetanic contractions. Spriet LL Pflugers Arch; 1990 Nov; 417(3):278-84. PubMed ID: 2148818 [TBL] [Abstract][Full Text] [Related]
10. Glycogen breakdown and lactate accumulation during high-intensity cycling. Medbø JI Acta Physiol Scand; 1993 Sep; 149(1):85-9. PubMed ID: 8237426 [TBL] [Abstract][Full Text] [Related]
12. Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation. Greenhaff PL; Söderlund K; Ren JM; Hultman E J Physiol; 1993 Jan; 460():443-53. PubMed ID: 8487203 [TBL] [Abstract][Full Text] [Related]
13. Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle. Ren JM; Gulve EA; Cartee GD; Holloszy JO Am J Physiol; 1992 Dec; 263(6):E1086-91. PubMed ID: 1476181 [TBL] [Abstract][Full Text] [Related]
14. Regulation of phosphorylase a activity in human skeletal muscle. Ren JM; Hultman E J Appl Physiol (1985); 1990 Sep; 69(3):919-23. PubMed ID: 2246179 [TBL] [Abstract][Full Text] [Related]
15. The effect of adrenaline infusion on the regulation of glycogenolysis in human muscle during isometric contraction. Chasiotis D; Hultman E Acta Physiol Scand; 1985 Jan; 123(1):55-60. PubMed ID: 2982245 [TBL] [Abstract][Full Text] [Related]
16. Energy metabolism in type I and type II human muscle fibres during short term electrical stimulation at different frequencies. Söderlund K; Greenhaff PL; Hultman E Acta Physiol Scand; 1992 Jan; 144(1):15-22. PubMed ID: 1595349 [TBL] [Abstract][Full Text] [Related]
17. Early metabolic adaptations of rabbit fast-twitch muscle to chronic low-frequency stimulation. Green HJ; Pette D Eur J Appl Physiol Occup Physiol; 1997; 75(5):418-24. PubMed ID: 9189729 [TBL] [Abstract][Full Text] [Related]
18. ATP content in single fibres from human skeletal muscle after electrical stimulation and during recovery. Söderlund K; Hultman E Acta Physiol Scand; 1990 Jul; 139(3):459-66. PubMed ID: 2239349 [TBL] [Abstract][Full Text] [Related]
19. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Spencer MK; Katz A Am J Physiol; 1991 Jun; 260(6 Pt 1):E859-64. PubMed ID: 2058662 [TBL] [Abstract][Full Text] [Related]
20. High physiological levels of epinephrine do not enhance muscle glycogenolysis during tetanic stimulation. Chesley A; Dyck DJ; Spriet LL J Appl Physiol (1985); 1994 Aug; 77(2):956-62. PubMed ID: 8002553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]