These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22394113)

  • 1. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer.
    Hu QZ; Jang CH
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1791-5. PubMed ID: 22394113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer.
    Zhang M; Jang CH
    Chemphyschem; 2014 Aug; 15(12):2569-74. PubMed ID: 24850496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer.
    Zhang M; Jang CH
    Anal Biochem; 2014 Jun; 455():13-9. PubMed ID: 24708935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface.
    Liu D; Hu QZ; Jang CH
    Colloids Surf B Biointerfaces; 2013 Aug; 108():142-6. PubMed ID: 23537831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple strategy to monitor lipase activity using liquid crystal-based sensors.
    Hu QZ; Jang CH
    Talanta; 2012 Sep; 99():36-9. PubMed ID: 22967518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using liquid crystals to report molecular interactions between cationic antimicrobial peptides and lipid membranes.
    Hu QZ; Jang CH
    Analyst; 2012 Feb; 137(3):567-70. PubMed ID: 22108758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals.
    Zhang M; Jang CH
    J Biosci Bioeng; 2015 Aug; 120(2):193-8. PubMed ID: 25656072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using liquid crystals for the label-free detection of catalase at aqueous-LC interfaces.
    Hu QZ; Jang CH
    J Biotechnol; 2012 Jan; 157(1):223-7. PubMed ID: 22138010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the disruption of phospholipid monolayer by protein-coated nanoparticles using ordering transitions of liquid crystals.
    Hartono D; Qin WJ; Yang KL; Yung LY
    Biomaterials; 2009 Feb; 30(5):843-9. PubMed ID: 19027155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease.
    Hu QZ; Jang CH
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):622-6. PubMed ID: 21846586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of cholesterol on protein-coated gold nanoparticle binding to liquid crystal-supported models of cell membranes.
    Hartono D; Hody ; Yang KL; Yung LY
    Biomaterials; 2010 Apr; 31(11):3008-15. PubMed ID: 20106518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of chlorothalonil levels through inhibitory effect on papain activity at protein-decorated liquid crystal interfaces.
    Duong DST; Jang CH
    Mikrochim Acta; 2022 Jul; 189(8):292. PubMed ID: 35879491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A liquid crystal-based sensor for real-time and label-free identification of phospholipase-like toxins and their inhibitors.
    Hartono D; Lai SL; Yang KL; Yung LY
    Biosens Bioelectron; 2009 Mar; 24(7):2289-93. PubMed ID: 19162466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA.
    Wang Y; Zhou L; Kang Q; Yu L
    Talanta; 2018 Jun; 183():223-227. PubMed ID: 29567168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic anchoring transitions at aqueous-liquid crystal interfaces induced by specific and non-specific binding of vesicles to proteins.
    Tan LN; Abbott NL
    J Colloid Interface Sci; 2015 Jul; 449():452-61. PubMed ID: 25731912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes.
    Takechi Y; Tanaka H; Kitayama H; Yoshii H; Tanaka M; Saito H
    Chem Phys Lipids; 2012 Jan; 165(1):51-8. PubMed ID: 22108318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the growth of polyelectrolyte multilayers formed at interfaces between aqueous phases and thermotropic liquid crystals.
    Gupta JK; Tjipto E; Zelikin AN; Caruso F; Abbott NL
    Langmuir; 2008 May; 24(10):5534-42. PubMed ID: 18419143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ordering transitions in nematic liquid crystals induced by vesicles captured through ligand-receptor interactions.
    Tan LN; Bertics PJ; Abbott NL
    Langmuir; 2011 Feb; 27(4):1419-29. PubMed ID: 21142099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct interfacial ordering of liquid crystals observed by protein-lipid interactions that enabled the label-free sensing of cytoplasmic protein at the liquid crystal-aqueous interface.
    Devi M; Verma I; Pal SK
    Analyst; 2021 Nov; 146(23):7152-7159. PubMed ID: 34734590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of the orientations of thermotropic liquid crystals to protein binding events at lipid-decorated interfaces.
    Brake JM; Abbott NL
    Langmuir; 2007 Jul; 23(16):8497-507. PubMed ID: 17595119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.