BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22394163)

  • 1. Use of 3D properties to characterize beyond rule-of-5 property space for passive permeation.
    Guimarães CR; Mathiowetz AM; Shalaeva M; Goetz G; Liras S
    J Chem Inf Model; 2012 Apr; 52(4):882-90. PubMed ID: 22394163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Membrane Partitioning Simulations To Predict Permeability of Forty-Nine Drug-Like Molecules.
    Dickson CJ; Hornak V; Bednarczyk D; Duca JS
    J Chem Inf Model; 2019 Jan; 59(1):236-244. PubMed ID: 30540467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple Predictive Models of Passive Membrane Permeability Incorporating Size-Dependent Membrane-Water Partition.
    Leung SS; Sindhikara D; Jacobson MP
    J Chem Inf Model; 2016 May; 56(5):924-9. PubMed ID: 27135806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs Beyond the Rule of 5.
    Rossi Sebastiano M; Doak BC; Backlund M; Poongavanam V; Over B; Ermondi G; Caron G; Matsson P; Kihlberg J
    J Med Chem; 2018 May; 61(9):4189-4202. PubMed ID: 29608068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling.
    Dickson CJ; Hornak V; Pearlstein RA; Duca JS
    J Am Chem Soc; 2017 Jan; 139(1):442-452. PubMed ID: 27951634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similar molecular descriptors determine the in vitro drug permeability in endothelial and epithelial cells.
    Hakkarainen JJ; Pajander J; Laitinen R; Suhonen M; Forsberg MM
    Int J Pharm; 2012 Oct; 436(1-2):426-43. PubMed ID: 22750947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.
    Du QS; Gao J; Wei YT; Du LQ; Wang SQ; Huang RB
    J Chem Inf Model; 2012 Apr; 52(4):996-1004. PubMed ID: 22480344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties.
    Hou TJ; Zhang W; Xia K; Qiao XB; Xu XJ
    J Chem Inf Comput Sci; 2004; 44(5):1585-600. PubMed ID: 15446816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysing molecular polar surface descriptors to predict blood-brain barrier permeation.
    Shityakov S; Neuhaus W; Dandekar T; Förster C
    Int J Comput Biol Drug Des; 2013; 6(1-2):146-56. PubMed ID: 23428480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacophore-based drug design and biological evaluation of novel ABCB1 inhibitors.
    Zhang SL; Wei YX; Li Q; Sun HP; Peng H; You QD
    Chem Biol Drug Des; 2013 Mar; 81(3):349-58. PubMed ID: 23095256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between Passive Permeability and Molecular Polarity Using Block Relevance Analysis.
    Goetz GH; Shalaeva M; Caron G; Ermondi G; Philippe L
    Mol Pharm; 2017 Feb; 14(2):386-393. PubMed ID: 28035823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions.
    van Oss CJ
    J Mol Recognit; 2003; 16(4):177-90. PubMed ID: 12898668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Membrane Permeation in the Beyond Rule-of-Five Space by Using Prodrugs to Mask Hydrogen Bond Donors.
    Barlow N; Chalmers DK; Williams-Noonan BJ; Thompson PE; Norton RS
    ACS Chem Biol; 2020 Aug; 15(8):2070-2078. PubMed ID: 32628005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkyl radicals as hydrogen bond acceptors: computational evidence.
    Hammerum S
    J Am Chem Soc; 2009 Jun; 131(24):8627-35. PubMed ID: 19489573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux.
    Desai PV; Sawada GA; Watson IA; Raub TJ
    Mol Pharm; 2013 Apr; 10(4):1249-61. PubMed ID: 23363443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the sites and energies of noncovalent intermolecular interactions using local properties.
    El Kerdawy A; Wick CR; Hennemann M; Clark T
    J Chem Inf Model; 2012 Apr; 52(4):1061-71. PubMed ID: 22458324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis.
    Chen LL; Yao J; Yang JB; Yang J
    Acta Pharmacol Sin; 2005 Nov; 26(11):1322-33. PubMed ID: 16225754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Principles for Balancing Lipophilicity and Permeability in beyond Rule of 5 Space.
    Möbitz H
    ChemMedChem; 2024 Mar; 19(5):e202300395. PubMed ID: 37986275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface pressure-dependent interactions of secretory phospholipase A2 with zwitterionic phospholipid membranes.
    Huang WN; Chen YH; Chen CL; Wu W
    Langmuir; 2011 Jun; 27(11):7034-41. PubMed ID: 21557547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.