These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 22394350)
1. Synthesis, characterization, and reactivity of Fe complexes containing cyclic diazadiphosphine ligands: the role of the pendant base in heterolytic cleavage of H2. Liu T; Chen S; O'Hagan MJ; Rakowski DuBois M; Bullock RM; DuBois DL J Am Chem Soc; 2012 Apr; 134(14):6257-72. PubMed ID: 22394350 [TBL] [Abstract][Full Text] [Related]
2. Effect of Bridgehead Steric Bulk on the Intramolecular C-H Heterolysis of [FeFe]-Hydrogenase Active Site Models Containing a P2N2 Pendant Amine Ligand. Zheng D; Wang M; Wang N; Cheng M; Sun L Inorg Chem; 2016 Jan; 55(2):411-8. PubMed ID: 26230977 [TBL] [Abstract][Full Text] [Related]
3. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Bullock RM; Helm ML Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983 [TBL] [Abstract][Full Text] [Related]
4. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction. Liu T; Wang X; Hoffmann C; DuBois DL; Bullock RM Angew Chem Int Ed Engl; 2014 May; 53(21):5300-4. PubMed ID: 24757087 [TBL] [Abstract][Full Text] [Related]
5. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Wilson AD; Shoemaker RK; Miedaner A; Muckerman JT; DuBois DL; DuBois MR Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6951-6. PubMed ID: 17360385 [TBL] [Abstract][Full Text] [Related]
6. Design and Characterization of Phosphine Iron Hydrides: Toward Hydrogen-Producing Catalysts. Weber K; Weyhermüller T; Bill E; Erdem ÖF; Lubitz W Inorg Chem; 2015 Jul; 54(14):6928-37. PubMed ID: 26132460 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and structural characterization of the mono- and diphosphine-containing diiron propanedithiolate complexes related to [FeFe]-hydrogenases. Biomimetic H2 evolution catalyzed by (mu-PDT)Fe2(CO)4[(Ph2P)2N(n-Pr)]. Song LC; Li CG; Ge JH; Yang ZY; Wang HT; Zhang J; Hu QM J Inorg Biochem; 2008 Nov; 102(11):1973-9. PubMed ID: 18783833 [TBL] [Abstract][Full Text] [Related]
8. Preparation, facile deprotonation, and rapid H/D exchange of the mu-hydride diiron model complexes of the [FeFe]-hydrogenase containing a pendant amine in a chelating diphosphine ligand. Wang N; Wang M; Liu J; Jin K; Chen L; Sun L Inorg Chem; 2009 Dec; 48(24):11551-8. PubMed ID: 20000647 [TBL] [Abstract][Full Text] [Related]
9. H2 binding and splitting on a new-generation [FeFe]-hydrogenase model featuring a redox-active decamethylferrocenyl phosphine ligand: a theoretical investigation. Greco C Inorg Chem; 2013 Feb; 52(4):1901-8. PubMed ID: 23374093 [TBL] [Abstract][Full Text] [Related]
10. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride. Zhang S; Appel AM; Bullock RM J Am Chem Soc; 2017 May; 139(21):7376-7387. PubMed ID: 28467854 [TBL] [Abstract][Full Text] [Related]
11. Coordination and conformational isomers in mononuclear iron complexes with pertinence to the [FeFe] hydrogenase active site. Orthaber A; Karnahl M; Tschierlei S; Streich D; Stein M; Ott S Dalton Trans; 2014 Mar; 43(11):4537-49. PubMed ID: 24457903 [TBL] [Abstract][Full Text] [Related]
12. Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: protonations, molecular structures and electrochemical properties. Gao S; Fan J; Sun S; Song F; Peng X; Duan Q; Jiang D; Liang Q Dalton Trans; 2012 Oct; 41(39):12064-74. PubMed ID: 22911248 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical and theoretical investigations of the role of the appended base on the reduction of protons by [Fe2(CO)4(κ2-PNP(R)(μ-S(CH2)3S] (PNP(R) ={Ph2PCH2}2NR, R=Me, Ph). Lounissi S; Zampella G; Capon JF; De Gioia L; Matoussi F; Mahfoudhi S; Pétillon FY; Schollhammer P; Talarmin J Chemistry; 2012 Aug; 18(35):11123-38. PubMed ID: 22807404 [TBL] [Abstract][Full Text] [Related]
14. Substitution reactions of iron(ii) carbamoyl-thioether complexes related to mono-iron hydrogenase. Xie ZL; Durgaprasad G; Ali AK; Rose MJ Dalton Trans; 2017 Aug; 46(33):10814-10829. PubMed ID: 28715006 [TBL] [Abstract][Full Text] [Related]
15. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties. Velusamy M; Mayilmurugan R; Palaniandavar M Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874 [TBL] [Abstract][Full Text] [Related]
16. Metal-ligand cooperation in H2 activation with iron complexes bearing hemilabile bis(diphenylphosphino)amine ligands. Frank N; Hanau K; Langer R Inorg Chem; 2014 Oct; 53(20):11335-43. PubMed ID: 25290535 [TBL] [Abstract][Full Text] [Related]
17. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase. Chen X; Jing Y; Yang X Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505 [TBL] [Abstract][Full Text] [Related]
18. A mononuclear iron carbonyl complex [Fe(μ-bdt)(CO) Natarajan M; Faujdar H; Mobin SM; Stein M; Kaur-Ghumaan S Dalton Trans; 2017 Aug; 46(30):10050-10056. PubMed ID: 28731078 [TBL] [Abstract][Full Text] [Related]
19. Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes. Zhao X; Georgakaki IP; Miller ML; Mejia-Rodriguez R; Chiang CY; Darensbourg MY Inorg Chem; 2002 Jul; 41(15):3917-28. PubMed ID: 12132916 [TBL] [Abstract][Full Text] [Related]