BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22394581)

  • 1. Visual Control for Multirobot Organized Rendezvous.
    Lopez-Nicolas G; Aranda M; Mezouar Y; Sagues C
    IEEE Trans Syst Man Cybern B Cybern; 2012 Aug; 42(4):1155-68. PubMed ID: 22394581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints.
    López-Nicolás G; Gans NR; Bhattacharya S; Sagüés C; Guerrero JJ; Hutchinson S
    IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1115-27. PubMed ID: 19923049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Servoing of Wheeled Mobile Robots Without Desired Images.
    Li B; Zhang X; Fang Y; Shi W
    IEEE Trans Cybern; 2019 Aug; 49(8):2835-2844. PubMed ID: 29994554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated Dynamic Behaviors for Multirobot Systems With Collision Avoidance.
    Sabattini L; Secchi C; Fantuzzi C
    IEEE Trans Cybern; 2017 Dec; 47(12):4062-4073. PubMed ID: 28113612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multipoint Rendezvous in Multirobot Systems.
    Parasuraman R; Kim J; Luo S; Min BC
    IEEE Trans Cybern; 2020 Jan; 50(1):310-323. PubMed ID: 30273170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive PID formation control of nonholonomic robots without leader's velocity information.
    Shen D; Sun W; Sun Z
    ISA Trans; 2014 Mar; 53(2):474-80. PubMed ID: 24388355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual Tracking and Depth Estimation of Mobile Robots Without Desired Velocity Information.
    Zhang K; Chen J; Li Y; Zhang X
    IEEE Trans Cybern; 2020 Jan; 50(1):361-373. PubMed ID: 30281506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative Robots to Observe Moving Targets: Review.
    Khan A; Rinner B; Cavallaro A
    IEEE Trans Cybern; 2018 Jan; 48(1):187-198. PubMed ID: 27925600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path following control of planar snake robots using virtual holonomic constraints: theory and experiments.
    Rezapour E; Pettersen KY; Liljebäck P; Gravdahl JT; Kelasidi E
    Robotics Biomim; 2014; 1(1):3. PubMed ID: 26613075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fixed-Time Rigidity-Based Formation Maneuvering for Nonholonomic Multirobot Systems With Prescribed Performance.
    Lu K; Dai SL; Jin X
    IEEE Trans Cybern; 2024 Apr; 54(4):2129-2141. PubMed ID: 37015411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network.
    Wang Y; Cheng L; Hou ZG; Yu J; Tan M
    IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):322-33. PubMed ID: 26316224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural-Dynamic Optimization-Based Model Predictive Control for Tracking and Formation of Nonholonomic Multirobot Systems.
    Li Z; Yuan W; Chen Y; Ke F; Chu X; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6113-6122. PubMed ID: 29993700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flooding algorithm for multirobot exploration.
    Cabrera-Mora F; Xiao J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):850-63. PubMed ID: 22275717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.
    Chen J; Jia B; Zhang K
    IEEE Trans Cybern; 2017 Nov; 47(11):3784-3798. PubMed ID: 27390199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy sliding-mode formation control for multirobot systems: design and implementation.
    Chang YH; Chang CW; Chen CL; Tao CW
    IEEE Trans Syst Man Cybern B Cybern; 2012 Apr; 42(2):444-57. PubMed ID: 22010151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dynamic Path Planning Approach for Multirobot Sensor-Based Coverage Considering Energy Constraints.
    Yazici A; Kirlik G; Parlaktuna O; Sipahioglu A
    IEEE Trans Cybern; 2014 Mar; 44(3):305-14. PubMed ID: 23757551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods based on 1D homography for camera calibration with 1D objects.
    Lv Y; Liu W; Xu X
    Appl Opt; 2018 Mar; 57(9):2155-2164. PubMed ID: 29604005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Triggered Formation Control of Nonholonomic Robots.
    Santos C; Espinosa F; Martinez-Rey M; Gualda D; Losada C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31207941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autocalibration of a projector-camera system.
    Okatani T; Deguchi K
    IEEE Trans Pattern Anal Mach Intell; 2005 Dec; 27(12):1845-55. PubMed ID: 16355654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatically obtaining the correspondences of four coplanar points for an uncalibrated camera.
    Cai S; Huang L; Liu Y
    Appl Opt; 2012 Aug; 51(22):5369-76. PubMed ID: 22859024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.