BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22394622)

  • 1. Potential for inhalation exposure to engineered nanoparticles from nanotechnology-based cosmetic powders.
    Nazarenko Y; Zhen H; Han T; Lioy PJ; Mainelis G
    Environ Health Perspect; 2012 Jun; 120(6):885-92. PubMed ID: 22394622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomaterial inhalation exposure from nanotechnology-based cosmetic powders: a quantitative assessment.
    Nazarenko Y; Zhen H; Han T; Lioy PJ; Mainelis G
    J Nanopart Res; 2012 Nov; 14(11):. PubMed ID: 23175627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A compact exposure: estimating inhalation of engineered nanoparticles in cosmetic powders.
    Tillett T
    Environ Health Perspect; 2012 Jun; 120(6):A245. PubMed ID: 22659103
    [No Abstract]   [Full Text] [Related]  

  • 4. Principles for the safety evaluation of cosmetic powders.
    Steiling W; Almeida JF; Assaf Vandecasteele H; Gilpin S; Kawamoto T; O'Keeffe L; Pappa G; Rettinger K; Rothe H; Bowden AM
    Toxicol Lett; 2018 Nov; 297():8-18. PubMed ID: 30125618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products.
    Nazarenko Y; Han TW; Lioy PJ; Mainelis G
    J Expo Sci Environ Epidemiol; 2011; 21(5):515-28. PubMed ID: 21364702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotechnology and exposure science: what is needed to fill the research and data gaps for consumer products.
    Lioy PJ; Nazarenko Y; Han TW; Lioy MJ; Mainelis G
    Int J Occup Environ Health; 2010; 16(4):378-87. PubMed ID: 21222382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential consumer exposure to respirable particles and TiO
    Oh HJ; Han TT; Mainelis G
    J Expo Sci Environ Epidemiol; 2021 Nov; 31(6):1032-1046. PubMed ID: 33208837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles.
    Cooper MR; West GH; Burrelli LG; Dresser D; Griffin KN; Segrave AM; Perrenoud J; Lippy BE
    J Occup Environ Hyg; 2017 Jul; 14(7):510-522. PubMed ID: 28406371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial-Temporal Dispersion of Aerosolized Nanoparticles During the Use of Consumer Spray Products and Estimates of Inhalation Exposure.
    Park J; Ham S; Jang M; Lee J; Kim S; Kim S; Lee K; Park D; Kwon J; Kim H; Kim P; Choi K; Yoon C
    Environ Sci Technol; 2017 Jul; 51(13):7624-7638. PubMed ID: 28441862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of an aerosol generation system to assess inhalation risks of aerosolized nano-enabled consumer products.
    Pearce K; Goldsmith WT; Greenwald R; Yang C; Mainelis G; Wright C
    Inhal Toxicol; 2019; 31(9-10):357-367. PubMed ID: 31779509
    [No Abstract]   [Full Text] [Related]  

  • 11. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop.
    Warheit DB; Borm PJ; Hennes C; Lademann J
    Inhal Toxicol; 2007 Jun; 19(8):631-43. PubMed ID: 17510836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety of titanium dioxide nanoparticles in cosmetics.
    Dréno B; Alexis A; Chuberre B; Marinovich M
    J Eur Acad Dermatol Venereol; 2019 Nov; 33 Suppl 7():34-46. PubMed ID: 31588611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Health Risk from Historical Use of Cosmetic Talcum Powder.
    Anderson EL; Sheehan PJ; Kalmes RM; Griffin JR
    Risk Anal; 2017 May; 37(5):918-929. PubMed ID: 27393372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle Size Distribution Analysis of OTC Aerosol or Powder Drug Products With Potential for Inadvertent Inhalation Exposure to Consumers.
    Liu X; Rua D; Wokovich A; Guo C; Keire D
    J Pharm Sci; 2019 Apr; 108(4):1506-1511. PubMed ID: 30468827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles: a review of particle toxicology following inhalation exposure.
    Bakand S; Hayes A; Dechsakulthorn F
    Inhal Toxicol; 2012; 24(2):125-35. PubMed ID: 22260506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition behavior of inhaled nanostructured TiO2 in rats: fractions of particle diameter below 100 nm (nanoscale) and the slicing bias of transmission electron microscopy.
    Morfeld P; Treumann S; Ma-Hock L; Bruch J; Landsiedel R
    Inhal Toxicol; 2012 Dec; 24(14):939-51. PubMed ID: 23216155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NIOSH field studies team assessment: Worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility.
    Brenner SA; Neu-Baker NM; Eastlake AC; Beaucham CC; Geraci CL
    J Occup Environ Hyg; 2016 Nov; 13(11):871-80. PubMed ID: 27171535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.
    Shepard MN; Brenner S
    Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative assessment of inhalation exposure and deposited dose of aerosol from nanotechnology-based consumer sprays.
    Nazarenko Y; Lioy PJ; Mainelis G
    Environ Sci Nano; 2014 Apr; 1(2):161-171. PubMed ID: 25621175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.
    Tian L; Shang Y; Chen R; Bai R; Chen C; Inthavong K; Tu J
    Part Fibre Toxicol; 2017 Jul; 14(1):24. PubMed ID: 28701167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.