These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 22395020)

  • 1. Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolixus (Hemiptera, Reduviidae) under different experimental conditions by quantitative real-time PCR.
    Paim RM; Pereira MH; Di Ponzio R; Rodrigues JO; Guarneri AA; Gontijo NF; Araújo RN
    BMC Res Notes; 2012 Mar; 5():128. PubMed ID: 22395020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction between Trypanosoma rangeli and the nitrophorins in the salivary glands of the triatomine Rhodnius prolixus (Hemiptera; Reduviidae).
    Paim RM; Pereira MH; Araújo RN; Gontijo NF; Guarneri AA
    Insect Biochem Mol Biol; 2013 Mar; 43(3):229-36. PubMed ID: 23295786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae).
    Majerowicz D; Alves-Bezerra M; Logullo R; Fonseca-de-Souza AL; Meyer-Fernandes JR; Braz GR; Gondim KC
    Insect Mol Biol; 2011 Dec; 20(6):713-22. PubMed ID: 21929722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of reference genes for insect olfaction studies.
    Omondi BA; Latorre-Estivalis JM; Rocha Oliveira IH; Ignell R; Lorenzo MG
    Parasit Vectors; 2015 Apr; 8():243. PubMed ID: 25896676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between Trypanosoma rangeli and the Rhodnius prolixus salivary gland depends on the phosphotyrosine ecto-phosphatase activity of the parasite.
    Dos-Santos AL; Dick CF; Alves-Bezerra M; Silveira TS; Paes LS; Gondim KC; Meyer-Fernandes JR
    Int J Parasitol; 2012 Aug; 42(9):819-27. PubMed ID: 22749957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi.
    Hinestroza G; Ortiz MI; Molina J
    Rev Soc Bras Med Trop; 2016; 49(4):425-32. PubMed ID: 27598628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycoinositolphospholipids from Trypanosomatids subvert nitric oxide production in Rhodnius prolixus salivary glands.
    Gazos-Lopes F; Mesquita RD; Silva-Cardoso L; Senna R; Silveira AB; Jablonka W; Cudischevitch CO; Carneiro AB; Machado EA; Lima LG; Monteiro RQ; Nussenzveig RH; Folly E; Romeiro A; Vanbeselaere J; Mendonça-Previato L; Previato JO; Valenzuela JG; Ribeiro JM; Atella GC; Silva-Neto MA
    PLoS One; 2012; 7(10):e47285. PubMed ID: 23077586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and validation of reference genes for real-time RT-PCR in Aphelenchoides besseyi.
    Li J; Zhang Z; Xu C; Wang D; Lv M; Xie H
    Mol Biol Rep; 2020 Jun; 47(6):4485-4494. PubMed ID: 32468259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli.
    Azambuja P; Garcia ES; Waniek PJ; Vieira CS; Figueiredo MB; Gonzalez MS; Mello CB; Castro DP; Ratcliffe NA
    J Insect Physiol; 2017; 97():45-65. PubMed ID: 27866813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus.
    Vieira CS; Waniek PJ; Castro DP; Mattos DP; Moreira OC; Azambuja P
    Parasit Vectors; 2016 Mar; 9():119. PubMed ID: 26931761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus.
    Peterson JK; Graham AL; Elliott RJ; Dobson AP; Triana Chávez O
    Parasitology; 2016 Aug; 143(9):1157-67. PubMed ID: 27174360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.).
    Wan H; Yuan W; Ruan M; Ye Q; Wang R; Li Z; Zhou G; Yao Z; Zhao J; Liu S; Yang Y
    Biochem Biophys Res Commun; 2011 Dec; 416(1-2):24-30. PubMed ID: 22086175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Evaluation of reference genes for quantitative real-time PCR normalization in cotton bollworm, Helicoverna armigera].
    Chandra GS; Asokan R; Manamohan M; Kumar NK; Sita T
    Mol Biol (Mosk); 2014; 48(6):927-38. PubMed ID: 25845233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trypanosoma cruzi infection modulates secreted phospholipase A
    de Araujo MFC; Cardoso LS; Pereira MH; Pereira MG; Atella GC
    Acta Trop; 2024 Sep; 257():107281. PubMed ID: 38852917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of reference genes for real-time quantitative RT-PCR studies in Talaromyces marneffei.
    Dankai W; Pongpom M; Vanittanakom N
    J Microbiol Methods; 2015 Nov; 118():42-50. PubMed ID: 26327538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Housekeeping while brain's storming Validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury.
    Rhinn H; Marchand-Leroux C; Croci N; Plotkine M; Scherman D; Escriou V
    BMC Mol Biol; 2008 Jul; 9():62. PubMed ID: 18611280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus.
    Fellet MR; Lorenzo MG; Elliot SL; Carrasco D; Guarneri AA
    PLoS One; 2014; 9(8):e105255. PubMed ID: 25136800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of different Rhodnius species (Hemiptera, Reduviidae, Triatominae) to a Brazilian strain of Trypanosoma rangeli (SC58/KP1-).
    Barreto-Santana D; Santos-Schuenker L; Fonseca AR; Gurgel-Gonçalves R; Cuba-Cuba CA
    Biomedica; 2015; 35(1):81-9. PubMed ID: 26148037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of internal control for gene expression in Phalaenopsis by quantitative real-time PCR.
    Yuan XY; Jiang SH; Wang MF; Ma J; Zhang XY; Cui B
    Appl Biochem Biotechnol; 2014 Jul; 173(6):1431-45. PubMed ID: 24811734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of valid reference genes for quantitative real-time PCR in Cotesia chilonis (Hymenoptera: Braconidae) exposed to different temperatures.
    Li QY; Li ZL; Lu MX; Cao SS; Du YZ
    PLoS One; 2019; 14(12):e0226139. PubMed ID: 31877150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.