BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22395149)

  • 1. Recent progress in biological charge transfer: theory and simulation.
    Koslowski T; Burggraf F; Krapf S; Steinbrecher T; Wittekindt C
    Biochim Biophys Acta; 2012 Oct; 1817(10):1955-7. PubMed ID: 22395149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge transfer through a cytochrome multiheme chain: theory and simulation.
    Burggraf F; Koslowski T
    Biochim Biophys Acta; 2014 Jan; 1837(1):186-92. PubMed ID: 24055674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions.
    Krapf S; Koslowski T; Steinbrecher T
    Phys Chem Chem Phys; 2010 Aug; 12(32):9516-25. PubMed ID: 20532362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge transfer through a fragment of the respiratory complex I and its regulation: an atomistic simulation approach.
    Na S; Jurkovic S; Friedrich T; Koslowski T
    Phys Chem Chem Phys; 2018 Aug; 20(30):20023-20032. PubMed ID: 30022212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The road not taken: a theoretical view of an unexpected cryptochrome charge transfer path.
    Krapf S; Weber S; Koslowski T
    Phys Chem Chem Phys; 2012 Aug; 14(32):11518-24. PubMed ID: 22805764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations.
    Narth C; Gillet N; Cailliez F; Lévy B; de la Lande A
    Acc Chem Res; 2015 Apr; 48(4):1090-7. PubMed ID: 25730126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress and challenges in simulating and understanding electron transfer in proteins.
    de la Lande A; Gillet N; Chen S; Salahub DR
    Arch Biochem Biophys; 2015 Sep; 582():28-41. PubMed ID: 26116376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct simulation of electron transfer using ring polymer molecular dynamics: comparison with semiclassical instanton theory and exact quantum methods.
    Menzeleev AR; Ananth N; Miller TF
    J Chem Phys; 2011 Aug; 135(7):074106. PubMed ID: 21861555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct simulation of proton-coupled electron transfer across multiple regimes.
    Kretchmer JS; Miller TF
    J Chem Phys; 2013 Apr; 138(13):134109. PubMed ID: 23574210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic amino acids as stepping stones in charge transfer in respiratory complex I: an unusual mechanism deduced from atomistic theory and bioinformatics.
    Wittekindt C; Schwarz M; Friedrich T; Koslowski T
    J Am Chem Soc; 2009 Jun; 131(23):8134-40. PubMed ID: 19507904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulated growth of Saccharomyces cerevisiae by altering the driving force of the reactions of cytochrome c: Marcus' theory in vitro and in vivo.
    Komar-Panicucci S; Sherman F; McLendon G
    Biochemistry; 1996 Apr; 35(15):4878-85. PubMed ID: 8664279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent reorganization energy of hole transfer in DNA.
    Kubar T; Elstner M
    J Phys Chem B; 2009 Apr; 113(16):5653-6. PubMed ID: 19331336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic Integration Networks and Their Application to Charge Transfer Reactions within the AauDyPI Fungal Peroxidase.
    Bauß A; Langenmaier M; Strittmatter E; Plattner DA; Koslowski T
    J Phys Chem B; 2016 Jun; 120(22):4937-44. PubMed ID: 27182684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating biological charge transfer: Continuum dielectric theory or molecular dynamics?
    Gnandt D; Na S; Koslowski T
    Biophys Chem; 2018 Oct; 241():1-7. PubMed ID: 30036762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic integration network study of electron transfer: from proteins to aggregates.
    Na S; Bauß A; Langenmaier M; Koslowski T
    Phys Chem Chem Phys; 2017 Jul; 19(29):18938-18947. PubMed ID: 28715019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic QM/MM simulations of fast charge transfer in Escherichia coli DNA photolyase.
    Woiczikowski PB; Steinbrecher T; Kubař T; Elstner M
    J Phys Chem B; 2011 Aug; 115(32):9846-63. PubMed ID: 21793510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing organic molecules by charge transfer through aptamer-target complexes: theory and simulation.
    Schill M; Koslowski T
    J Phys Chem B; 2013 Jan; 117(2):475-83. PubMed ID: 23227783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study of the primary charge separation reactions in Photosystem I: effect of the replacement of the axial ligands to the electron acceptor A₀.
    Milanovsky GE; Ptushenko VV; Golbeck JH; Semenov AY; Cherepanov DA
    Biochim Biophys Acta; 2014 Sep; 1837(9):1472-83. PubMed ID: 24637178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.