BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 22395432)

  • 1. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue.
    Sotgia F; Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Philp NJ; Pestell RG; Lisanti MP
    Cell Cycle; 2012 Apr; 11(7):1445-54. PubMed ID: 22395432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers.
    Witkiewicz AK; Whitaker-Menezes D; Dasgupta A; Philp NJ; Lin Z; Gandara R; Sneddon S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Mar; 11(6):1108-17. PubMed ID: 22313602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer.
    Curry JM; Tuluc M; Whitaker-Menezes D; Ames JA; Anantharaman A; Butera A; Leiby B; Cognetti DM; Sotgia F; Lisanti MP; Martinez-Outschoorn UE
    Cell Cycle; 2013 May; 12(9):1371-84. PubMed ID: 23574725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Lin Z; Ertel A; Flomenberg N; Witkiewicz AK; Birbe RC; Howell A; Pavlides S; Gandara R; Pestell RG; Sotgia F; Philp NJ; Lisanti MP
    Cell Cycle; 2011 Jun; 10(11):1772-83. PubMed ID: 21558814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Pavlides S; Tsirigos A; Ertel A; Pestell RG; Broda P; Minetti C; Lisanti MP; Sotgia F
    Cell Cycle; 2011 Dec; 10(23):4047-64. PubMed ID: 22134189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hodgkin lymphoma: A complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment.
    Mikkilineni L; Whitaker-Menezes D; Domingo-Vidal M; Sprandio J; Avena P; Cotzia P; Dulau-Florea A; Gong J; Uppal G; Zhan T; Leiby B; Lin Z; Pro B; Sotgia F; Lisanti MP; Martinez-Outschoorn U
    Semin Oncol; 2017 Jun; 44(3):218-225. PubMed ID: 29248133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.
    Migneco G; Whitaker-Menezes D; Chiavarina B; Castello-Cros R; Pavlides S; Pestell RG; Fatatis A; Flomenberg N; Tsirigos A; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Jun; 9(12):2412-22. PubMed ID: 20562527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4.
    Martinez-Outschoorn UE; Curry JM; Ko YH; Lin Z; Tuluc M; Cognetti D; Birbe RC; Pribitkin E; Bombonati A; Pestell RG; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2013 Aug; 12(16):2580-97. PubMed ID: 23860378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial and glycolytic metabolic compartmentalization in diffuse large B-cell lymphoma.
    Gooptu M; Whitaker-Menezes D; Sprandio J; Domingo-Vidal M; Lin Z; Uppal G; Gong J; Fratamico R; Leiby B; Dulau-Florea A; Caro J; Martinez-Outschoorn U
    Semin Oncol; 2017 Jun; 44(3):204-217. PubMed ID: 29248132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic phenotypes in triple-negative breast cancer.
    Kim S; Kim DH; Jung WH; Koo JS
    Tumour Biol; 2013 Jun; 34(3):1699-712. PubMed ID: 23443971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism.
    Bonuccelli G; Tsirigos A; Whitaker-Menezes D; Pavlides S; Pestell RG; Chiavarina B; Frank PG; Flomenberg N; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Sep; 9(17):3506-14. PubMed ID: 20818174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment.
    Martinez-Outschoorn UE; Pavlides S; Howell A; Pestell RG; Tanowitz HB; Sotgia F; Lisanti MP
    Int J Biochem Cell Biol; 2011 Jul; 43(7):1045-51. PubMed ID: 21300172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth.
    Chiavarina B; Whitaker-Menezes D; Martinez-Outschoorn UE; Witkiewicz AK; Birbe R; Howell A; Pestell RG; Smith J; Daniel R; Sotgia F; Lisanti MP
    Cancer Biol Ther; 2011 Dec; 12(12):1101-13. PubMed ID: 22236875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.
    Guido C; Whitaker-Menezes D; Capparelli C; Balliet R; Lin Z; Pestell RG; Howell A; Aquila S; Andò S; Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Aug; 11(16):3019-35. PubMed ID: 22874531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection.
    Balliet RM; Capparelli C; Guido C; Pestell TG; Martinez-Outschoorn UE; Lin Z; Whitaker-Menezes D; Chiavarina B; Pestell RG; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Dec; 10(23):4065-73. PubMed ID: 22129993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies.
    Martinez-Outschoorn UE; Balliet R; Lin Z; Whitaker-Menezes D; Birbe RC; Bombonati A; Pavlides S; Lamb R; Sneddon S; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Dec; 11(23):4402-13. PubMed ID: 23172369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.
    Pavlides S; Whitaker-Menezes D; Castello-Cros R; Flomenberg N; Witkiewicz AK; Frank PG; Casimiro MC; Wang C; Fortina P; Addya S; Pestell RG; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2009 Dec; 8(23):3984-4001. PubMed ID: 19923890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Scaffold-Free 3-D Co-Culture Mimics the Major Features of the Reverse Warburg Effect In Vitro.
    Keller F; Bruch R; Schneider R; Meier-Hubberten J; Hafner M; Rudolf R
    Cells; 2020 Aug; 9(8):. PubMed ID: 32823793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.