These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22395619)

  • 21. Demonstration of motion transduction based on parametrically coupled mechanical resonators.
    Huang P; Wang P; Zhou J; Wang Z; Ju C; Wang Z; Shen Y; Duan C; Du J
    Phys Rev Lett; 2013 May; 110(22):227202. PubMed ID: 23767744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Quality Factors in Superlattice Ferroelectric Hf
    Zheng XQ; Tharpe T; Enamul Hoque Yousuf SM; Rudawski NG; Feng PX; Tabrizian R
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36807-36814. PubMed ID: 35920004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Universal transduction scheme for nanomechanical systems based on dielectric forces.
    Unterreithmeier QP; Weig EM; Kotthaus JP
    Nature; 2009 Apr; 458(7241):1001-4. PubMed ID: 19396140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical backaction of microwave fields on a nanomechanical oscillator.
    Teufel JD; Harlow JW; Regal CA; Lehnert KW
    Phys Rev Lett; 2008 Nov; 101(19):197203. PubMed ID: 19113301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges.
    Takamura M; Okamoto H; Furukawa K; Yamaguchi H; Hibino H
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators.
    Stassi S; Cooperstein I; Tortello M; Pirri CF; Magdassi S; Ricciardi C
    Nat Commun; 2021 Oct; 12(1):6080. PubMed ID: 34667168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photonic cavity synchronization of nanomechanical oscillators.
    Bagheri M; Poot M; Fan L; Marquardt F; Tang HX
    Phys Rev Lett; 2013 Nov; 111(21):213902. PubMed ID: 24313490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissipative optomechanics in high-frequency nanomechanical resonators.
    Primo AG; Pinho PV; Benevides R; Gröblacher S; Wiederhecker GS; Alegre TPM
    Nat Commun; 2023 Sep; 14(1):5793. PubMed ID: 37723162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A local optical probe for measuring motion and stress in a nanoelectromechanical system.
    Reserbat-Plantey A; Marty L; Arcizet O; Bendiab N; Bouchiat V
    Nat Nanotechnol; 2012 Jan; 7(3):151-5. PubMed ID: 22266635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanomechanical measurements of a superconducting qubit.
    LaHaye MD; Suh J; Echternach PM; Schwab KC; Roukes ML
    Nature; 2009 Jun; 459(7249):960-4. PubMed ID: 19536259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate and Precise Determination of Mechanical Properties of Silicon Nitride Beam Nanoelectromechanical Devices.
    Kim H; Shin DH; McAllister K; Seo M; Lee S; Kang IS; Park BH; Campbell EE; Lee SW
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7282-7287. PubMed ID: 28156098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong gate coupling of high-Q nanomechanical resonators.
    Sulkko J; Sillanpää MA; Häkkinen P; Lechner L; Helle M; Fefferman A; Parpia J; Hakonen PJ
    Nano Lett; 2010 Dec; 10(12):4884-9. PubMed ID: 21053964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-chip interferometric detection of nanomechanical motion.
    Unterreithmeier QP; Faust T; Manus S; Kotthaus JP
    Nano Lett; 2010 Mar; 10(3):887-90. PubMed ID: 20131919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Raman Spectroscopic Probe for Nonlinear MoS
    Yang R; Yousuf SMEH; Lee J; Zhang P; Liu Z; Feng PX
    Nano Lett; 2022 Jul; 22(14):5780-5787. PubMed ID: 35792575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing Linear to Nonlinear Damping in 2D Semiconductor Nanoelectromechanical Resonators toward a Unified Quality Factor Model.
    Zhang P; Jia Y; Liu Z; Zhou X; Xiao D; Chen Y; Jia H; Yang R
    Nano Lett; 2023 Oct; 23(20):9375-9382. PubMed ID: 37788247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monolithic integration of a nanomechanical resonator to an optical microdisk cavity.
    Basarir O; Bramhavar S; Ekinci KL
    Opt Express; 2012 Feb; 20(4):4272-9. PubMed ID: 22418186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies.
    Cha J; Daraio C
    Nat Nanotechnol; 2018 Nov; 13(11):1016-1020. PubMed ID: 30201989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Quality Factor Mechanical Resonators Based on WSe2 Monolayers.
    Morell N; Reserbat-Plantey A; Tsioutsios I; Schädler KG; Dubin F; Koppens FH; Bachtold A
    Nano Lett; 2016 Aug; 16(8):5102-8. PubMed ID: 27459399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano-Optomechanical Resonators in Microfluidics.
    Fong KY; Poot M; Tang HX
    Nano Lett; 2015 Sep; 15(9):6116-20. PubMed ID: 26226184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Q Trampoline Resonators from Strained Crystalline InGaP for Integrated Free-Space Optomechanics.
    Manjeshwar SK; Ciers A; Hellman F; Bläsing J; Strittmatter A; Wieczorek W
    Nano Lett; 2023 Jun; 23(11):5076-5082. PubMed ID: 37234019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.