These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 22396037)
1. Proton-transfer reaction mass spectrometry (PTRMS) in combination with thermal desorption (TD) for sensitive off-line analysis of volatiles. Crespo E; Devasena S; Sikkens C; Centeno R; Cristescu SM; Harren FJ Rapid Commun Mass Spectrom; 2012 Apr; 26(8):990-6. PubMed ID: 22396037 [TBL] [Abstract][Full Text] [Related]
2. The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air. Ross BM; Vermeulen N Rapid Commun Mass Spectrom; 2007; 21(22):3608-12. PubMed ID: 17939161 [TBL] [Abstract][Full Text] [Related]
3. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481 [TBL] [Abstract][Full Text] [Related]
4. Proton transfer reaction-mass spectrometry applications in medical research. Herbig J; Amann A J Breath Res; 2009 Jun; 3(2):020201. PubMed ID: 21383455 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air. Roukos J; Plaisance H; Leonardis T; Bates M; Locoge N J Chromatogr A; 2009 Dec; 1216(49):8642-51. PubMed ID: 19863965 [TBL] [Abstract][Full Text] [Related]
6. δD and δ13C analyses of atmospheric volatile organic compounds by thermal desorption gas chromatography isotope ratio mass spectrometry. von Eckstaedt CV; Grice K; Ioppolo-Armanios M; Chidlow G; Jones M J Chromatogr A; 2011 Sep; 1218(37):6511-7. PubMed ID: 21807368 [TBL] [Abstract][Full Text] [Related]
7. Implementation of proton transfer reaction-mass spectrometry (PTR-MS) for advanced bioprocess monitoring. Luchner M; Gutmann R; Bayer K; Dunkl J; Hansel A; Herbig J; Singer W; Strobl F; Winkler K; Striedner G Biotechnol Bioeng; 2012 Dec; 109(12):3059-69. PubMed ID: 22711525 [TBL] [Abstract][Full Text] [Related]
8. Real-time versus thermal desorption selected ion flow tube mass spectrometry for quantification of breath volatiles. Slingers G; Vanden Eede M; Lindekens J; Spruyt M; Goelen E; Raes M; Koppen G Rapid Commun Mass Spectrom; 2021 Feb; 35(4):e8994. PubMed ID: 33125775 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello(®) diffusive sampler for the analysis of VOCs. Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2011 Jul; 85(1):662-72. PubMed ID: 21645756 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2010 May; 81(3):916-24. PubMed ID: 20298873 [TBL] [Abstract][Full Text] [Related]
11. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2685-94. PubMed ID: 20106482 [TBL] [Abstract][Full Text] [Related]
12. Use of thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) on identification of odorant emission focus by volatile organic compounds characterisation. Rodríguez-Navas C; Forteza R; Cerdà V Chemosphere; 2012 Nov; 89(11):1426-36. PubMed ID: 22776256 [TBL] [Abstract][Full Text] [Related]
13. Development of a proton-transfer reaction-linear ion trap mass spectrometer for quantitative determination of volatile organic compounds. Mielke LH; Erickson DE; McLuckey SA; Müller M; Wisthaler A; Hansel A; Shepson PB Anal Chem; 2008 Nov; 80(21):8171-7. PubMed ID: 18841942 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the effect of different sampling time periods and ambient air pollutant concentrations on the performance of the Radiello diffusive sampler for the analysis of VOCs by TD-GC/MS. Gallego E; Roca FJ; Perales JF; Guardino X J Environ Monit; 2011 Sep; 13(9):2612-22. PubMed ID: 21829856 [TBL] [Abstract][Full Text] [Related]
15. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry. Wu Y; Chang VW J Chromatogr A; 2012 May; 1238():114-20. PubMed ID: 22494639 [TBL] [Abstract][Full Text] [Related]
16. Investigation of characterization method for nanoparticles in roadside atmosphere by thermal desorption-gas chromatography/mass spectrometry using a pyrolyzer. Fushimi A; Tanabe K; Hasegawa S; Kobayashi S Sci Total Environ; 2007 Nov; 386(1-3):83-92. PubMed ID: 17590418 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system. Ribes A; Carrera G; Gallego E; Roca X; Berenguer MA; Guardino X J Chromatogr A; 2007 Jan; 1140(1-2):44-55. PubMed ID: 17187810 [TBL] [Abstract][Full Text] [Related]
18. Automatic on-line monitoring of atmospheric volatile organic compounds: gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems. de Blas M; Navazo M; Alonso L; Durana N; Iza J Sci Total Environ; 2011 Nov; 409(24):5459-69. PubMed ID: 21978614 [TBL] [Abstract][Full Text] [Related]
19. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421 [TBL] [Abstract][Full Text] [Related]
20. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS. Ratiu IA; Bocos-Bintintan V; Patrut A; Moll VH; Turner M; Thomas CLP Anal Chim Acta; 2017 Aug; 982():209-217. PubMed ID: 28734362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]