These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 22396037)
41. Determination of material emission signatures by PTR-MS and their correlations with odor assessments by human subjects. Han KH; Zhang JS; Wargocki P; Knudsen HN; Guo B Indoor Air; 2010 Aug; 20(4):341-54. PubMed ID: 20557375 [TBL] [Abstract][Full Text] [Related]
42. Determining specific food volatiles contributing to PTR-MS ion profiles using GC-EI-MS. Pozo-Bayón MA; Schirlé-Keller JP; Reineccius GA J Agric Food Chem; 2008 Jul; 56(13):5278-84. PubMed ID: 18564845 [TBL] [Abstract][Full Text] [Related]
43. Automated needle trap heart-cut GC/MS and needle trap comprehensive two-dimensional GC/TOF-MS for breath gas analysis in the clinical environment. Mieth M; Schubert JK; Gröger T; Sabel B; Kischkel S; Fuchs P; Hein D; Zimmermann R; Miekisch W Anal Chem; 2010 Mar; 82(6):2541-51. PubMed ID: 20170082 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of the solid-phase extraction (SPE) cartridge method in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) for the analysis of different VOCs in liquid matrices in varying pH conditions. Pandey SK; Kim KH J Sep Sci; 2012 Aug; 35(15):1914-21. PubMed ID: 22865756 [TBL] [Abstract][Full Text] [Related]
45. In-line sampling with gas chromatography-mass spectrometry to monitor ambient volatile organic compounds. Wang JL; Chang CC; Lee KZ J Chromatogr A; 2012 Jul; 1248():161-8. PubMed ID: 22717034 [TBL] [Abstract][Full Text] [Related]
46. Detection of isocyanates and polychlorinated biphenyls using proton transfer reaction mass spectrometry. Agarwal B; Jürschik S; Sulzer P; Petersson F; Jaksch S; Jordan A; Märk TD Rapid Commun Mass Spectrom; 2012 Apr; 26(8):983-9. PubMed ID: 22396036 [TBL] [Abstract][Full Text] [Related]
47. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Smith D; Spanel P Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143 [TBL] [Abstract][Full Text] [Related]
48. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds. Marcillo A; Jakimovska V; Widdig A; Birkemeyer C J Chromatogr A; 2017 Sep; 1514():16-28. PubMed ID: 28765001 [TBL] [Abstract][Full Text] [Related]
49. Comparative study of solvent extraction and thermal desorption methods for determining a wide range of volatile organic compounds in ambient air. Ramírez N; Cuadras A; Rovira E; Borrull F; Marcé RM Talanta; 2010 Jul; 82(2):719-27. PubMed ID: 20602960 [TBL] [Abstract][Full Text] [Related]
50. Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry. Trefz P; Schmidt M; Oertel P; Obermeier J; Brock B; Kamysek S; Dunkl J; Zimmermann R; Schubert JK; Miekisch W Anal Chem; 2013 Nov; 85(21):10321-9. PubMed ID: 24044609 [TBL] [Abstract][Full Text] [Related]
51. Recent developments of proton-transfer reaction mass spectrometry (PTR-MS) and its applications in medical research. Zhan X; Duan J; Duan Y Mass Spectrom Rev; 2013; 32(2):143-65. PubMed ID: 23097015 [TBL] [Abstract][Full Text] [Related]
52. Needle microextraction trap for on-site analysis of airborne volatile compounds at ultra-trace levels in gaseous samples. Alonso M; Godayol A; Antico E; Sanchez JM J Sep Sci; 2011 Oct; 34(19):2705-11. PubMed ID: 21818851 [TBL] [Abstract][Full Text] [Related]
53. Thermal desorption comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry for vapour phase mainstream tobacco smoke analysis. Savareear B; Brokl M; Wright C; Focant JF J Chromatogr A; 2017 Nov; 1525():126-137. PubMed ID: 29030031 [TBL] [Abstract][Full Text] [Related]
54. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry. Brown VM; Crump DR; Plant NT; Pengelly I J Chromatogr A; 2014 Jul; 1350():1-9. PubMed ID: 24877978 [TBL] [Abstract][Full Text] [Related]
55. Potential biomarkers for identification of mycobacterial cultures by proton transfer reaction mass spectrometry analysis. Crespo E; de Ronde H; Kuijper S; Pol A; Kolk AH; Cristescu SM; Anthony RM; Harren FJ Rapid Commun Mass Spectrom; 2012 Mar; 26(6):679-85. PubMed ID: 22328222 [TBL] [Abstract][Full Text] [Related]
56. Detection of volatile organic compounds in breath using thermal desorption electrospray ionization-ion mobility-mass spectrometry. Reynolds JC; Blackburn GJ; Guallar-Hoyas C; Moll VH; Bocos-Bintintan V; Kaur-Atwal G; Howdle MD; Harry EL; Brown LJ; Creaser CS; Thomas CL Anal Chem; 2010 Mar; 82(5):2139-44. PubMed ID: 20143891 [TBL] [Abstract][Full Text] [Related]
57. Recovery and reactivity of polycyclic aromatic hydrocarbons collected on selected sorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry. Wallace MAG; Pleil JD; Whitaker DA; Oliver KD J Chromatogr A; 2019 Sep; 1602():19-29. PubMed ID: 31128883 [TBL] [Abstract][Full Text] [Related]
58. Extent of sample loss on the sampling device and the resulting experimental biases when collecting volatile fatty acids (VFAs) in air using sorbent tubes. Kim YH; Kim KH Anal Chem; 2013 Aug; 85(16):7818-25. PubMed ID: 23869450 [TBL] [Abstract][Full Text] [Related]
59. Different methods for volatile sampling in mammals. Kücklich M; Möller M; Marcillo A; Einspanier A; Weiß BM; Birkemeyer C; Widdig A PLoS One; 2017; 12(8):e0183440. PubMed ID: 28841690 [TBL] [Abstract][Full Text] [Related]
60. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Westhoff M; Litterst P; Freitag L; Urfer W; Bader S; Baumbach JI Thorax; 2009 Sep; 64(9):744-8. PubMed ID: 19158121 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]