BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22396093)

  • 1. Phytoremediation potential of aquatic macrophyte, Azolla.
    Sood A; Uniyal PL; Prasanna R; Ahluwalia AS
    Ambio; 2012 Mar; 41(2):122-37. PubMed ID: 22396093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata.
    Rai PK
    Int J Phytoremediation; 2008; 10(5):430-9. PubMed ID: 19260224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes.
    Talebi M; Tabatabaei BES; Akbarzadeh H
    Chemosphere; 2019 Sep; 230():488-497. PubMed ID: 31121512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana.
    Pandey VC
    Ecotoxicol Environ Saf; 2012 Aug; 82():8-12. PubMed ID: 22677365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.
    Rezania S; Taib SM; Md Din MF; Dahalan FA; Kamyab H
    J Hazard Mater; 2016 Nov; 318():587-599. PubMed ID: 27474848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems.
    Nguyen TQ; Sesin V; Kisiala A; Emery RJN
    Environ Toxicol Chem; 2021 Jan; 40(1):7-22. PubMed ID: 33074580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of heavy metals in a tropical impoundment of industrial region.
    Rai PK
    Environ Monit Assess; 2010 Jun; 165(1-4):529-37. PubMed ID: 19430918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcosm investigation on phytoremediation of Cr using Azolla pinnata.
    Rai PK
    Int J Phytoremediation; 2010 Jan; 12(1):96-104. PubMed ID: 20734631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima.
    Iha DS; Bianchini I
    Int J Phytoremediation; 2015; 17(10):929-35. PubMed ID: 25848891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK
    Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.
    Kumari A; Lal B; Rai UN
    Int J Phytoremediation; 2016; 18(6):592-7. PubMed ID: 26442874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures.
    Guittonny-Philippe A; Petit ME; Masotti V; Monnier Y; Malleret L; Coulomb B; Combroux I; Baumberger T; Viglione J; Laffont-Schwob I
    J Environ Manage; 2015 Jan; 147():108-23. PubMed ID: 25262393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic arsenic: phytoremediation using floating macrophytes.
    Rahman MA; Hasegawa H
    Chemosphere; 2011 Apr; 83(5):633-46. PubMed ID: 21435676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India.
    Rai PK; Tripathi BD
    Environ Monit Assess; 2009 Jan; 148(1-4):75-84. PubMed ID: 18210204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenanthrene stress response and phytoremediation potential of free-floating fern
    Kösesakal T; Seyhan M
    Int J Phytoremediation; 2023; 25(2):207-220. PubMed ID: 35501688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.
    Sharma S; Singh B; Manchanda VK
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):946-62. PubMed ID: 25277712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata.
    Dixit S; Dhote S
    Environ Monit Assess; 2010 Oct; 169(1-4):367-74. PubMed ID: 19890730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides.
    Zhang X; Lin AJ; Zhao FJ; Xu GZ; Duan GL; Zhu YG
    Environ Pollut; 2008 Dec; 156(3):1149-55. PubMed ID: 18457908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.