BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22396122)

  • 1. The effects of iron oxide incorporation on the chondrogenic potential of three human cell types.
    Saha S; Yang XB; Tanner S; Curran S; Wood D; Kirkham J
    J Tissue Eng Regen Med; 2013 Jun; 7(6):461-9. PubMed ID: 22396122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-response of superparamagnetic iron oxide labeling on mesenchymal stem cells chondrogenic differentiation: a multi-scale in vitro study.
    Roeder E; Henrionnet C; Goebel JC; Gambier N; Beuf O; Grenier D; Chen B; Vuissoz PA; Gillet P; Pinzano A
    PLoS One; 2014; 9(5):e98451. PubMed ID: 24878844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell viability and chondrogenic differentiation capability of human mesenchymal stem cells after iron labeling with iron sucrose.
    Papadimitriou N; Thorfve A; Brantsing C; Junevik K; Baranto A; Barreto Henriksson H
    Stem Cells Dev; 2014 Nov; 23(21):2568-80. PubMed ID: 25036548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides.
    van Buul GM; Kotek G; Wielopolski PA; Farrell E; Bos PK; Weinans H; Grohnert AU; Jahr H; Verhaar JA; Krestin GP; van Osch GJ; Bernsen MR
    PLoS One; 2011 Feb; 6(2):e17001. PubMed ID: 21373640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of incremental concentrations of micron-sized superparamagnetic iron oxide for labelling articular cartilage derived chondroprogenitors.
    Vinod E; James JV; Kachroo U; Sathishkumar S; Livingston A; Ramasamy B
    Acta Histochem; 2019 Oct; 121(7):791-797. PubMed ID: 31326114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of superparamagnetic iron oxide on differentiation of rat bone marrow stem cells into chondrocytes in vitro].
    Jiang F; Xiao JJ; Lu YT; Li W; Duan YW; Sheng ZH; Li SL
    Nan Fang Yi Ke Da Xue Xue Bao; 2017 May; 37(5):652-658. PubMed ID: 28539289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct labeling of hMSC with SPIO: the long-term influence on toxicity, chondrogenic differentiation capacity, and intracellular distribution.
    Yang CY; Hsiao JK; Tai MF; Chen ST; Cheng HY; Wang JL; Liu HM
    Mol Imaging Biol; 2011 Jun; 13(3):443-451. PubMed ID: 20567925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging of umbilical cord stem cells labeled with superparamagnetic iron oxide nanoparticles: effects of labelling and transplantation parameters.
    Ohki A; Saito S; Fukuchi K
    Sci Rep; 2020 Aug; 10(1):13684. PubMed ID: 32792506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates.
    Yan C; Wang Y; Shen XY; Yang G; Jian J; Wang HS; Chen GQ; Wu Q
    Biomaterials; 2011 Sep; 32(27):6435-44. PubMed ID: 21665270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes.
    Saha S; Kirkham J; Wood D; Curran S; Yang X
    Biochem Biophys Res Commun; 2010 Oct; 401(3):333-8. PubMed ID: 20849819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1.
    Branly T; Bertoni L; Contentin R; Rakic R; Gomez-Leduc T; Desancé M; Hervieu M; Legendre F; Jacquet S; Audigié F; Denoix JM; Demoor M; Galéra P
    Stem Cell Rev Rep; 2017 Oct; 13(5):611-630. PubMed ID: 28597211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells.
    Solchaga LA; Penick K; Goldberg VM; Caplan AI; Welter JF
    Tissue Eng Part A; 2010 Mar; 16(3):1009-19. PubMed ID: 19842915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes.
    Recha-Sancho L; Semino CE
    J Biomed Mater Res A; 2016 Jul; 104(7):1694-706. PubMed ID: 26939919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging of chondrocytes labeled with superparamagnetic iron oxide nanoparticles in tissue-engineered cartilage.
    Ramaswamy S; Greco JB; Uluer MC; Zhang Z; Zhang Z; Fishbein KW; Spencer RG
    Tissue Eng Part A; 2009 Dec; 15(12):3899-910. PubMed ID: 19788362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells.
    Randau TM; Schildberg FA; Alini M; Wimmer MD; Haddouti el-M; Gravius S; Ito K; Stoddart MJ
    PLoS One; 2013; 8(8):e72973. PubMed ID: 23977373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell labelling with superparamagnetic iron oxide has no effect on chondrocyte behaviour.
    Farrell E; Wielopolski P; Pavljasevic P; Kops N; Weinans H; Bernsen MR; van Osch GJ
    Osteoarthritis Cartilage; 2009 Jul; 17(7):961-7. PubMed ID: 19147376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid ceramidase maintains the chondrogenic phenotype of expanded primary chondrocytes and improves the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Simonaro CM; Sachot S; Ge Y; He X; Deangelis VA; Eliyahu E; Leong DJ; Sun HB; Mason JB; Haskins ME; Richardson DW; Schuchman EH
    PLoS One; 2013; 8(4):e62715. PubMed ID: 23638138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.
    Murphy MK; Huey DJ; Hu JC; Athanasiou KA
    Stem Cells; 2015 Mar; 33(3):762-73. PubMed ID: 25377511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis.
    Fischer J; Dickhut A; Rickert M; Richter W
    Arthritis Rheum; 2010 Sep; 62(9):2696-706. PubMed ID: 20496422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.