These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22396122)

  • 1. The effects of iron oxide incorporation on the chondrogenic potential of three human cell types.
    Saha S; Yang XB; Tanner S; Curran S; Wood D; Kirkham J
    J Tissue Eng Regen Med; 2013 Jun; 7(6):461-9. PubMed ID: 22396122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-response of superparamagnetic iron oxide labeling on mesenchymal stem cells chondrogenic differentiation: a multi-scale in vitro study.
    Roeder E; Henrionnet C; Goebel JC; Gambier N; Beuf O; Grenier D; Chen B; Vuissoz PA; Gillet P; Pinzano A
    PLoS One; 2014; 9(5):e98451. PubMed ID: 24878844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell viability and chondrogenic differentiation capability of human mesenchymal stem cells after iron labeling with iron sucrose.
    Papadimitriou N; Thorfve A; Brantsing C; Junevik K; Baranto A; Barreto Henriksson H
    Stem Cells Dev; 2014 Nov; 23(21):2568-80. PubMed ID: 25036548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides.
    van Buul GM; Kotek G; Wielopolski PA; Farrell E; Bos PK; Weinans H; Grohnert AU; Jahr H; Verhaar JA; Krestin GP; van Osch GJ; Bernsen MR
    PLoS One; 2011 Feb; 6(2):e17001. PubMed ID: 21373640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of incremental concentrations of micron-sized superparamagnetic iron oxide for labelling articular cartilage derived chondroprogenitors.
    Vinod E; James JV; Kachroo U; Sathishkumar S; Livingston A; Ramasamy B
    Acta Histochem; 2019 Oct; 121(7):791-797. PubMed ID: 31326114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of superparamagnetic iron oxide on differentiation of rat bone marrow stem cells into chondrocytes in vitro].
    Jiang F; Xiao JJ; Lu YT; Li W; Duan YW; Sheng ZH; Li SL
    Nan Fang Yi Ke Da Xue Xue Bao; 2017 May; 37(5):652-658. PubMed ID: 28539289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct labeling of hMSC with SPIO: the long-term influence on toxicity, chondrogenic differentiation capacity, and intracellular distribution.
    Yang CY; Hsiao JK; Tai MF; Chen ST; Cheng HY; Wang JL; Liu HM
    Mol Imaging Biol; 2011 Jun; 13(3):443-451. PubMed ID: 20567925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging of umbilical cord stem cells labeled with superparamagnetic iron oxide nanoparticles: effects of labelling and transplantation parameters.
    Ohki A; Saito S; Fukuchi K
    Sci Rep; 2020 Aug; 10(1):13684. PubMed ID: 32792506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates.
    Yan C; Wang Y; Shen XY; Yang G; Jian J; Wang HS; Chen GQ; Wu Q
    Biomaterials; 2011 Sep; 32(27):6435-44. PubMed ID: 21665270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes.
    Saha S; Kirkham J; Wood D; Curran S; Yang X
    Biochem Biophys Res Commun; 2010 Oct; 401(3):333-8. PubMed ID: 20849819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1.
    Branly T; Bertoni L; Contentin R; Rakic R; Gomez-Leduc T; Desancé M; Hervieu M; Legendre F; Jacquet S; Audigié F; Denoix JM; Demoor M; Galéra P
    Stem Cell Rev Rep; 2017 Oct; 13(5):611-630. PubMed ID: 28597211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells.
    Solchaga LA; Penick K; Goldberg VM; Caplan AI; Welter JF
    Tissue Eng Part A; 2010 Mar; 16(3):1009-19. PubMed ID: 19842915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes.
    Recha-Sancho L; Semino CE
    J Biomed Mater Res A; 2016 Jul; 104(7):1694-706. PubMed ID: 26939919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging of chondrocytes labeled with superparamagnetic iron oxide nanoparticles in tissue-engineered cartilage.
    Ramaswamy S; Greco JB; Uluer MC; Zhang Z; Zhang Z; Fishbein KW; Spencer RG
    Tissue Eng Part A; 2009 Dec; 15(12):3899-910. PubMed ID: 19788362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells.
    Randau TM; Schildberg FA; Alini M; Wimmer MD; Haddouti el-M; Gravius S; Ito K; Stoddart MJ
    PLoS One; 2013; 8(8):e72973. PubMed ID: 23977373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell labelling with superparamagnetic iron oxide has no effect on chondrocyte behaviour.
    Farrell E; Wielopolski P; Pavljasevic P; Kops N; Weinans H; Bernsen MR; van Osch GJ
    Osteoarthritis Cartilage; 2009 Jul; 17(7):961-7. PubMed ID: 19147376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid ceramidase maintains the chondrogenic phenotype of expanded primary chondrocytes and improves the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Simonaro CM; Sachot S; Ge Y; He X; Deangelis VA; Eliyahu E; Leong DJ; Sun HB; Mason JB; Haskins ME; Richardson DW; Schuchman EH
    PLoS One; 2013; 8(4):e62715. PubMed ID: 23638138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.
    Murphy MK; Huey DJ; Hu JC; Athanasiou KA
    Stem Cells; 2015 Mar; 33(3):762-73. PubMed ID: 25377511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis.
    Fischer J; Dickhut A; Rickert M; Richter W
    Arthritis Rheum; 2010 Sep; 62(9):2696-706. PubMed ID: 20496422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.