These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22396193)

  • 61. Development of biocompatible synthetic extracellular matrices for tissue engineering.
    Kim BS; Mooney DJ
    Trends Biotechnol; 1998 May; 16(5):224-30. PubMed ID: 9621462
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures.
    Zhang R; Ma PX
    J Biomed Mater Res; 2000 Nov; 52(2):430-8. PubMed ID: 10951385
    [TBL] [Abstract][Full Text] [Related]  

  • 63. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.
    Irimia-Vladu M
    Chem Soc Rev; 2014 Jan; 43(2):588-610. PubMed ID: 24121237
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Surface-grafting of phosphates onto a polymer for potential biomimetic functionalization of biomaterials.
    Ko YG; Ma PX
    J Colloid Interface Sci; 2009 Feb; 330(1):77-83. PubMed ID: 18977490
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of chemically crosslinked pullulan/gelatin-based extracellular matrix-mimetic gels.
    Han Y; Lv S
    Int J Biol Macromol; 2019 Feb; 122():1262-1270. PubMed ID: 30223056
    [TBL] [Abstract][Full Text] [Related]  

  • 66. "Click" chemistry in polymeric scaffolds: Bioactive materials for tissue engineering.
    Zou Y; Zhang L; Yang L; Zhu F; Ding M; Lin F; Wang Z; Li Y
    J Control Release; 2018 Mar; 273():160-179. PubMed ID: 29382547
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Materials based on biodegradable polymers chitosan/gelatin: a review of potential applications.
    Yarahmadi A; Dousti B; Karami-Khorramabadi M; Afkhami H
    Front Bioeng Biotechnol; 2024; 12():1397668. PubMed ID: 39157438
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pattern generation of biological ligands on a biodegradable poly(glycolic acid) film.
    Lee KB; Kim DJ; Lee ZW; Woo SI; Choi IS
    Langmuir; 2004 Mar; 20(7):2531-5. PubMed ID: 15835118
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fumed silica nanoparticle mediated biomimicry for optimal cell-material interactions for artificial organ development.
    de Mel A; Ramesh B; Scurr DJ; Alexander MR; Hamilton G; Birchall M; Seifalian AM
    Macromol Biosci; 2014 Mar; 14(3):307-13. PubMed ID: 24243739
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biodegradable Polymers and their Applications: A Review.
    Bhovi VK; Melinmath SP; Gowda R
    Mini Rev Med Chem; 2022; 22(16):2081-2101. PubMed ID: 35088668
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inherently Antimicrobial Biodegradable Polymers in Tissue Engineering.
    Watson E; Tatara AM; Kontoyiannis DP; Mikos AG
    ACS Biomater Sci Eng; 2017 Jul; 3(7):1207-1220. PubMed ID: 33440510
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modified glycogen as construction material for functional biomimetic microfibers.
    Rabyk M; Hruby M; Vetrik M; Kucka J; Proks V; Parizek M; Konefal R; Krist P; Chvatil D; Bacakova L; Slouf M; Stepanek P
    Carbohydr Polym; 2016 Nov; 152():271-279. PubMed ID: 27516273
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Smart Carriers and Nanohealers: A Nanomedical Insight on Natural Polymers.
    Raveendran S; Rochani AK; Maekawa T; Kumar DS
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28796191
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A polymeric domain that promotes cellular internalization.
    Kolonko EM; Kiessling LL
    J Am Chem Soc; 2008 Apr; 130(17):5626-7. PubMed ID: 18393495
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polymer based scaffolds and carriers for bioactive agents from different natural origin materials.
    Malafaya PB; Gomes ME; Salgado AJ; Reis RL
    Adv Exp Med Biol; 2003; 534():201-33. PubMed ID: 12903722
    [No Abstract]   [Full Text] [Related]  

  • 76. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers.
    Pawłowska A; Stepczyńska M
    J Polym Environ; 2022; 30(5):1683-1708. PubMed ID: 34720776
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Controlled release of bioactive agents in gene therapy and tissue engineering.
    Sendil Keskin D; Hasirci V
    Adv Exp Med Biol; 2003; 534():279-96. PubMed ID: 12903727
    [No Abstract]   [Full Text] [Related]  

  • 78. Three-Dimensional Microfluidic Tissue-Engineering Scaffolds Using a Flexible Biodegradable Polymer.
    Bettinger CJ; Weinberg EJ; Kulig KM; Vacanti JP; Wang Y; Borenstein JT; Langer R
    Adv Mater; 2005 Dec; 18(2):165-169. PubMed ID: 19759845
    [No Abstract]   [Full Text] [Related]  

  • 79. Infiltration of 3D printed tricalciumphosphate scaffolds with biodegradable polymers and biomolecules for local drug delivery.
    Cornelsen M; Petersen S; Dietsch K; Rudolph A; Schmitz K; Sternberg K; Seitz H
    Biomed Tech (Berl); 2013 Aug; 58 Suppl 1():. PubMed ID: 24042685
    [No Abstract]   [Full Text] [Related]  

  • 80. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application.
    Noro J; Vilaça-Faria H; Reis RL; Pirraco RP
    Bioact Mater; 2024 Apr; 34():494-519. PubMed ID: 38298755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.