These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22396721)

  • 41. Thermal probe maskless lithography for 27.5 nm half-pitch Si technology.
    Cheong LL; Paul P; Holzner F; Despont M; Coady DJ; Hedrick JL; Allen R; Knoll AW; Duerig U
    Nano Lett; 2013 Sep; 13(9):4485-91. PubMed ID: 23965001
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silicon dioxide mask by plasma enhanced atomic layer deposition in focused ion beam lithography.
    Liu Z; Shah A; Alasaarela T; Chekurov N; Savin H; Tittonen I
    Nanotechnology; 2017 Feb; 28(8):085303. PubMed ID: 28045005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of Tapered Micropillars with High Aspect-Ratio Based on Deep X-ray Lithography.
    Park JM; Kim JH; Han JS; Shin DS; Park SC; Son SH; Park SJ
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit.
    Chen X; Park HR; Lindquist NC; Shaver J; Pelton M; Oh SH
    Sci Rep; 2014 Oct; 4():6722. PubMed ID: 25342288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Revealing the truncated conical geometry of nanochannels in anodic aluminium oxide membranes.
    Zhang J; Zhao H; Gong M; Zhang L; Yan Z; Xie K; Fei G; Zhu X; Kong M; Zhang S; Zhang L; Lei Y
    Nanoscale; 2022 Apr; 14(14):5356-5368. PubMed ID: 35293409
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography.
    Yin Z; Cheng E; Zou H
    Lab Chip; 2014 May; 14(9):1614-21. PubMed ID: 24647653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of Silicon Nanobelts and Nanopillars by Soft Lithography for Hydrophobic and Hydrophilic Photonic Surfaces.
    Baquedano E; Martinez RV; Llorens JM; Postigo PA
    Nanomaterials (Basel); 2017 May; 7(5):. PubMed ID: 28492474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio.
    Wang S; Liu Y; Ge P; Kan Q; Yu N; Wang J; Nan J; Ye S; Zhang J; Xu W; Yang B
    Lab Chip; 2018 Mar; 18(6):979-988. PubMed ID: 29485661
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A low-cost and high-efficiency method for four-inch silicon nano-mold by proximity UV exposure.
    Sun L; Zou H; Sang S
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34507308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of 70 nm-sized zero residual polymer patterns by thermal nanoimprint lithography.
    Yang KY; Kim JW; Byeon KJ; Lee HC; Lee H
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4194-6. PubMed ID: 19916428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of Ultranarrow Nanochannels with Ultrasmall Nanocomponents in Glass Substrates.
    Kamai H; Xu Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34209303
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A soft lithographic approach to fabricate InAs nanowire field-effect transistors.
    Lee SH; Shin SH; Madsen M; Takei K; Nah J; Lee MH
    Sci Rep; 2018 Feb; 8(1):3204. PubMed ID: 29453402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controlled Patterning of Vertical Silicon Structures Using Polymer Lithography and Wet Chemical Etching.
    Kim HJ; Lee SH; Lee J; Lee ES; Choi JH; Jung JY; Jeong JH; Choi DG
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4522-9. PubMed ID: 26369075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect.
    Datta A; Gangopadhyay S; Temkin H; Pu Q; Liu S
    Talanta; 2006 Jan; 68(3):659-65. PubMed ID: 18970372
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of superconducting niobium nitride nanowire with high aspect ratio for X-ray photon detection.
    Guo S; Chen Q; Pan D; Wu Y; Tu X; He G; Han H; Li F; Jia X; Zhao Q; Zhang H; Bei X; Xie J; Zhang L; Chen J; Kang L; Wu P
    Sci Rep; 2020 Jun; 10(1):9057. PubMed ID: 32494024
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dispersion-Controlled Gold-Aluminum-Silicon Dioxide-Aluminum Nanopawn Structures for Visible to NIR Light Modulation.
    Park J; In S; Park N
    Adv Mater; 2021 Apr; 33(15):e2007831. PubMed ID: 33599009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of two dimensional polyethylene terephthalate nanofluidic chip using hot embossing and thermal bonding technique.
    Yin Z; Cheng E; Zou H; Chen L; Xu S
    Biomicrofluidics; 2014 Nov; 8(6):066503. PubMed ID: 25553203
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wafer-scale nanofabrication of sub-100 nm arrays by deep-UV displacement Talbot lithography.
    Gómez VJ; Graczyk M; Jam RJ; Lehmann S; Maximov I
    Nanotechnology; 2020 May; 31(29):295301. PubMed ID: 32259808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wafer Scale Fabrication of Dense and High Aspect Ratio Sub-50 nm Nanopillars from Phase Separation of Cross-Linkable Polysiloxane/Polystyrene Blend.
    Li Y; Hao Y; Huang C; Chen X; Chen X; Cui Y; Yuan C; Qiu K; Ge H; Chen Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13685-13693. PubMed ID: 28361542
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of nanopore arrays and ultrathin silicon nitride membranes by block-copolymer-assisted lithography.
    Popa AM; Niedermann P; Heinzelmann H; Hubbell JA; Pugin R
    Nanotechnology; 2009 Dec; 20(48):485303. PubMed ID: 19880976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.