BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22396770)

  • 21. High firing rate of neonatal hippocampal interneurons is caused by attenuation of afterhyperpolarizing potassium currents by tonically active kainate receptors.
    Segerstråle M; Juuri J; Lanore F; Piepponen P; Lauri SE; Mulle C; Taira T
    J Neurosci; 2010 May; 30(19):6507-14. PubMed ID: 20463214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons.
    Braga MF; Aroniadou-Anderjaska V; Li H; Rogawski MA
    J Pharmacol Exp Ther; 2009 Aug; 330(2):558-66. PubMed ID: 19417176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors.
    Paternain AV; Herrera MT; Nieto MA; Lerma J
    J Neurosci; 2000 Jan; 20(1):196-205. PubMed ID: 10627597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic kainate currents reset interneuron firing phase.
    Yang EJ; Harris AZ; Pettit DL
    J Physiol; 2007 Jan; 578(Pt 1):259-73. PubMed ID: 17068102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pharmacological investigation of the role of GLUK5-containing receptors in kainate-driven hippocampal gamma band oscillations.
    Brown JT; Teriakidis A; Randall AD
    Neuropharmacology; 2006 Jan; 50(1):47-56. PubMed ID: 16153668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Presynaptic inactivation of action potentials and postsynaptic inhibition of GABAA currents contribute to KA-induced disinhibition in CA1 pyramidal neurons.
    Kang N; Jiang L; He W; Xu J; Nedergaard M; Kang J
    J Neurophysiol; 2004 Aug; 92(2):873-82. PubMed ID: 14999044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interneuronal GluK1 kainate receptors control maturation of GABAergic transmission and network synchrony in the hippocampus.
    Ojanen S; Kuznetsova T; Kharybina Z; Voikar V; Lauri SE; Taira T
    Mol Brain; 2023 May; 16(1):43. PubMed ID: 37210550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kainate receptors and signal integration by NG2 glial cells.
    Kukley M; Dietrich D
    Neuron Glia Biol; 2009 May; 5(1-2):13-20. PubMed ID: 20025816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionotropic and metabotropic kainate receptor signalling regulates Cl
    Garand D; Mahadevan V; Woodin MA
    J Physiol; 2019 Mar; 597(6):1677-1690. PubMed ID: 30570751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-specific alterations in synaptic properties of hippocampal CA1 interneurons after kainate treatment.
    Morin F; Beaulieu C; Lacaille JC
    J Neurophysiol; 1998 Dec; 80(6):2836-47. PubMed ID: 9862888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice.
    Bureau I; Bischoff S; Heinemann SF; Mulle C
    J Neurosci; 1999 Jan; 19(2):653-63. PubMed ID: 9880586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic kainate receptors in CA1 interneurons gate the threshold of theta-frequency-induced long-term potentiation.
    Clarke VR; Collingridge GL; Lauri SE; Taira T
    J Neurosci; 2012 Dec; 32(50):18215-26. PubMed ID: 23238735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia.
    Porter RH; Eastwood SL; Harrison PJ
    Brain Res; 1997 Mar; 751(2):217-31. PubMed ID: 9099808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of kainate receptors controls the number of functional glutamatergic synapses in the area CA1 of rat hippocampus.
    Vesikansa A; Sallert M; Taira T; Lauri SE
    J Physiol; 2007 Aug; 583(Pt 1):145-57. PubMed ID: 17569736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of group I metabotropic glutamate receptors potentiates heteromeric kainate receptors.
    Rojas A; Wetherington J; Shaw R; Serrano G; Swanger S; Dingledine R
    Mol Pharmacol; 2013 Jan; 83(1):106-21. PubMed ID: 23066089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses.
    Ruiz A; Sachidhanandam S; Utvik JK; Coussen F; Mulle C
    J Neurosci; 2005 Dec; 25(50):11710-8. PubMed ID: 16354929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation.
    Bernard A; Ferhat L; Dessi F; Charton G; Represa A; Ben-Ari Y; Khrestchatisky M
    Eur J Neurosci; 1999 Feb; 11(2):604-16. PubMed ID: 10051761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Presynaptic facilitation of glutamate release in the basolateral amygdala: a mechanism for the anxiogenic and seizurogenic function of GluK1 receptors.
    Aroniadou-Anderjaska V; Pidoplichko VI; Figueiredo TH; Almeida-Suhett CP; Prager EM; Braga MF
    Neuroscience; 2012 Sep; 221():157-69. PubMed ID: 22796081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Serotonergic modulation of neurotransmission in the rat basolateral amygdala.
    Rainnie DG
    J Neurophysiol; 1999 Jul; 82(1):69-85. PubMed ID: 10400936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bidirectional regulation of kainate receptor surface expression in hippocampal neurons.
    Martin S; Bouschet T; Jenkins EL; Nishimune A; Henley JM
    J Biol Chem; 2008 Dec; 283(52):36435-40. PubMed ID: 18955488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.