These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22397372)

  • 21. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.
    Liao P; Keith JA; Carter EA
    J Am Chem Soc; 2012 Aug; 134(32):13296-309. PubMed ID: 22788792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting.
    Kim JY; Youn DH; Kang K; Lee JS
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10854-8. PubMed ID: 27489101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting.
    Zhang H; Li D; Byun WJ; Wang X; Shin TJ; Jeong HY; Han H; Li C; Lee JS
    Nat Commun; 2020 Sep; 11(1):4622. PubMed ID: 32934221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient Hole Extraction from a Hole-Storage-Layer-Stabilized Tantalum Nitride Photoanode for Solar Water Splitting.
    Liu G; Fu P; Zhou L; Yan P; Ding C; Shi J; Li C
    Chemistry; 2015 Jun; 21(27):9624-8. PubMed ID: 26032659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hematite-NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity.
    Bora DK; Braun A; Erni R; Müller U; Döbeli M; Constable EC
    Phys Chem Chem Phys; 2013 Aug; 15(30):12648-59. PubMed ID: 23788236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive photoelectrochemical methanol and water oxidation with hematite electrodes.
    Klahr B; Gimenez S; Zandi O; Fabregat-Santiago F; Hamann T
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7653-60. PubMed ID: 25804788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.
    Hamd W; Cobo S; Fize J; Baldinozzi G; Schwartz W; Reymermier M; Pereira A; Fontecave M; Artero V; Laberty-Robert C; Sanchez C
    Phys Chem Chem Phys; 2012 Oct; 14(38):13224-32. PubMed ID: 22911106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A scalable colloidal approach to prepare hematite films for efficient solar water splitting.
    Zong X; Thaweesak S; Xu H; Xing Z; Zou J; Lu GM; Wang L
    Phys Chem Chem Phys; 2013 Aug; 15(29):12314-21. PubMed ID: 23778329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Water Splitting Efficiency Through Selective Surface State Removal.
    Zandi O; Hamann TW
    J Phys Chem Lett; 2014 May; 5(9):1522-6. PubMed ID: 26270090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array.
    Li J; Cushing SK; Zheng P; Meng F; Chu D; Wu N
    Nat Commun; 2013; 4():2651. PubMed ID: 24136178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrathin planar hematite film for solar photoelectrochemical water splitting.
    Liu D; Bierman DM; Lenert A; Yu HT; Yang Z; Wang EN; Duan YY
    Opt Express; 2015 Nov; 23(24):A1491-8. PubMed ID: 26698797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pt-functionalized Fe2O3 photoanodes for solar water splitting: the role of hematite nano-organization and the platinum redox state.
    Warwick ME; Barreca D; Bontempi E; Carraro G; Gasparotto A; Maccato C; Kaunisto K; Ruoko TP; Lemmetyinen H; Sada C; Gönüllü Y; Mathur S
    Phys Chem Chem Phys; 2015 May; 17(19):12899-907. PubMed ID: 25909639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of Hematite Electronic Properties with Trimethyl Aluminum to Enhance the Efficiency of Photoelectrodes.
    Tallarida M; Das C; Cibrev D; Kukli K; Tamm A; Ritala M; Lana-Villarreal T; Gómez R; Leskelä M; Schmeisser D
    J Phys Chem Lett; 2014 Oct; 5(20):3582-7. PubMed ID: 26278613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanonet-based hematite heteronanostructures for efficient solar water splitting.
    Lin Y; Zhou S; Sheehan SW; Wang D
    J Am Chem Soc; 2011 Mar; 133(8):2398-401. PubMed ID: 21306153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced photocatalytic water oxidation efficiency with Ni(OH)₂ catalysts deposited on α-Fe₂O₃ via ALD.
    Young KM; Hamann TW
    Chem Commun (Camb); 2014 Aug; 50(63):8727-30. PubMed ID: 24963754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting.
    Liu G; Shi J; Zhang F; Chen Z; Han J; Ding C; Chen S; Wang Z; Han H; Li C
    Angew Chem Int Ed Engl; 2014 Jul; 53(28):7295-9. PubMed ID: 24890044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong O 2p-Fe 3d Hybridization Observed in Solution-Grown Hematite Films by Soft X-ray Spectroscopies.
    Ye Y; Thorne JE; Wu CH; Liu YS; Du C; Jang JW; Liu E; Wang D; Guo J
    J Phys Chem B; 2018 Jan; 122(2):927-932. PubMed ID: 29090934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation.
    Yang TY; Kang HY; Sim U; Lee YJ; Lee JH; Koo B; Nam KT; Joo YC
    Phys Chem Chem Phys; 2013 Feb; 15(6):2117-24. PubMed ID: 23288103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.