These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22397548)

  • 21. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles.
    Chowdhury SR; Yanful EK; Pratt AR
    J Hazard Mater; 2012 Oct; 235-236():246-56. PubMed ID: 22902142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cr(VI) adsorption and reduction by humic acid coated on magnetite.
    Jiang W; Cai Q; Xu W; Yang M; Cai Y; Dionysiou DD; O'Shea KE
    Environ Sci Technol; 2014 Jul; 48(14):8078-85. PubMed ID: 24901955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Fe-metabolizing bacteria and humic substances on magnetite nanoparticle reactivity towards arsenic and chromium.
    Sundman A; Vitzthum AL; Adaktylos-Surber K; Figueroa AI; van der Laan G; Daus B; Kappler A; Byrne JM
    J Hazard Mater; 2020 Feb; 384():121450. PubMed ID: 31759758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer.
    Huang XY; Ling L; Zhang WX
    J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon.
    Li M; He J; Tang Y; Sun J; Fu H; Wan Y; Qu X; Xu Z; Zheng S
    Chemosphere; 2019 Feb; 217():742-753. PubMed ID: 30448754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of chitosan/magnetite-graphene oxide composites as a novel bioadsorbent for adsorption and detoxification of Cr(VI) from aqueous solution.
    Zhang B; Hu R; Sun D; Wu T; Li Y
    Sci Rep; 2018 Oct; 8(1):15397. PubMed ID: 30337616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fe(0)-Fe3O4 nanocomposites embedded polyvinyl alcohol/sodium alginate beads for chromium (VI) removal.
    Lv X; Jiang G; Xue X; Wu D; Sheng T; Sun C; Xu X
    J Hazard Mater; 2013 Nov; 262():748-58. PubMed ID: 24140524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.
    Gheju M; Balcu I
    J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiolytic formation of non-toxic Cr(III) from toxic Cr(VI) in formate containing aqueous solutions: A system for water treatment.
    Djouider F
    J Hazard Mater; 2012 Jul; 223-224():104-9. PubMed ID: 22595544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst.
    Coker VS; Bennett JA; Telling ND; Henkel T; Charnock JM; van der Laan G; Pattrick RA; Pearce CI; Cutting RS; Shannon IJ; Wood J; Arenholz E; Lyon IC; Lloyd JR
    ACS Nano; 2010 May; 4(5):2577-84. PubMed ID: 20394356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens.
    Byrne JM; Muhamadali H; Coker VS; Cooper J; Lloyd JR
    J R Soc Interface; 2015 Jun; 12(107):. PubMed ID: 25972437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of Cr(VI) by "palladized" biomass of Desulfovibrio desulfuricans ATCC 29577.
    Mabbett AN; Yong P; Farr JP; Macaskie LE
    Biotechnol Bioeng; 2004 Jul; 87(1):104-9. PubMed ID: 15211494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study.
    Pinakidou F; Kaprara E; Katsikini M; Paloura EC; Simeonidis K; Mitrakas M
    Sci Total Environ; 2016 May; 551-552():246-53. PubMed ID: 26878637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems.
    Xie Y; Cwiertny DM
    Environ Sci Technol; 2010 Nov; 44(22):8649-8655. PubMed ID: 20968304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer.
    Ren L; Dong J; Chi Z; Huang H
    J Environ Sci (China); 2018 Nov; 73():96-106. PubMed ID: 30290877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of common groundwater ions on chromate removal by magnetite: importance of chromate adsorption.
    Meena AH; Arai Y
    Geochem Trans; 2016; 17():1. PubMed ID: 27134569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved longevity of nanoscale zero-valent iron with a magnesium hydroxide coating shell for the removal of Cr(VI) in sand columns.
    Hu YB; Zhang M; Li XY
    Environ Int; 2019 Dec; 133(Pt B):105249. PubMed ID: 31665676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters.
    Toli A; Chalastara K; Mystrioti C; Xenidis A; Papassiopi N
    Environ Pollut; 2016 Jul; 214():419-429. PubMed ID: 27108046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous removal of Cr(VI) from aqueous solution catalysed by palladised biomass of Desulfovibrio vulgaris.
    Humphries AC; Nott KP; Hall LD; Macaskie LE
    Biotechnol Lett; 2004 Oct; 26(19):1529-32. PubMed ID: 15604792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.