BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22397838)

  • 1. Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase.
    Kim IG; Jo BH; Kang DG; Kim CS; Choi YS; Cha HJ
    Chemosphere; 2012 Jun; 87(10):1091-6. PubMed ID: 22397838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and expression of gamma carbonic anhydrase from Serratia sp. ISTD04 for sequestration of carbon dioxide and formation of calcite.
    Srivastava S; Bharti RK; Verma PK; Thakur IS
    Bioresour Technol; 2015; 188():209-13. PubMed ID: 25686723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of expression and biochemical characterization of a beta-class carbonic anhydrase from the plant growth-promoting rhizobacterium, Azospirillum brasilense Sp7.
    Kaur S; Mishra MN; Tripathi AK
    FEMS Microbiol Lett; 2009 Oct; 299(2):149-58. PubMed ID: 19694814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On carbon dioxide storage based on biomineralization strategies.
    Lee SW; Park SB; Jeong SK; Lim KS; Lee SH; Trachtenberg MC
    Micron; 2010 Jun; 41(4):273-82. PubMed ID: 20144548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration.
    Jo BH; Kim IG; Seo JH; Kang DG; Cha HJ
    Appl Environ Microbiol; 2013 Nov; 79(21):6697-705. PubMed ID: 23974145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of recombinant α-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1.
    Faridi S; Satyanarayana T
    Int J Biol Macromol; 2016 Aug; 89():659-68. PubMed ID: 27174908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gene homologous to beta-type carbonic anhydrase is essential for the growth of Corynebacterium glutamicum under atmospheric conditions.
    Mitsuhashi S; Ohnishi J; Hayashi M; Ikeda M
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):592-601. PubMed ID: 12937954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO₂ sequestration.
    Fan LH; Liu N; Yu MR; Yang ST; Chen HL
    Biotechnol Bioeng; 2011 Dec; 108(12):2853-64. PubMed ID: 21732326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO(2) sequestration application.
    Kanth BK; Min K; Kumari S; Jeon H; Jin ES; Lee J; Pack SP
    Appl Biochem Biotechnol; 2012 Aug; 167(8):2341-56. PubMed ID: 22715026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and High-Level Periplasmic Expression of Thermostable α-Carbonic Anhydrase from
    Jo BH; Hwang IS
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31877855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periplasmic expression of carbonic anhydrase in Escherichia coli: a new biocatalyst for CO(2) hydration.
    Patel TN; Park AH; Banta S
    Biotechnol Bioeng; 2013 Jul; 110(7):1865-73. PubMed ID: 23404317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization.
    Dhami NK; Reddy MS; Mukherjee A
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2552-61. PubMed ID: 24407944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of carbonic anhydrase from bovine erythrocytes and its application in the enzymic capture of carbon dioxide.
    da Costa Ores J; Sala L; Cerveira GP; Kalil SJ
    Chemosphere; 2012 Jun; 88(2):255-9. PubMed ID: 22513339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1.
    Capasso C; De Luca V; Carginale V; Cannio R; Rossi M
    J Enzyme Inhib Med Chem; 2012 Dec; 27(6):892-7. PubMed ID: 22803664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of carbon dioxide to oxaloacetate using integrated carbonic anhydrase and phosphoenolpyruvate carboxylase.
    Chang KS; Jeon H; Gu MB; Pack SP; Jin E
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1923-8. PubMed ID: 23689757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced algal CO(2) sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond.
    Ramanan R; Kannan K; Deshkar A; Yadav R; Chakrabarti T
    Bioresour Technol; 2010 Apr; 101(8):2616-22. PubMed ID: 19939669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.
    Müller WE; Schlossmacher U; Schröder HC; Lieberwirth I; Glasser G; Korzhev M; Neufurth M; Wang X
    Acta Biomater; 2014 Jan; 10(1):450-62. PubMed ID: 23978410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2 bioconversion using carbonic anhydrase (CA): effects of PEG rigidity on the structure of bio-mineralized crystal composites.
    Hwang ET; Gang H; Gu MB
    J Biotechnol; 2013 Oct; 168(2):208-11. PubMed ID: 23845271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of novel auto-inducible medium on growth, activity and CO₂ capture capacity of Escherichia coli expressing carbonic anhydrase.
    Watson SK; Kan E
    J Microbiol Methods; 2015 Oct; 117():139-43. PubMed ID: 26264623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular carbonic anhydrase from Citrobacter freundii and its role in bio-sequestration.
    Giri A; Banerjee UC; Kumar M; Pant D
    Bioresour Technol; 2018 Nov; 267():789-792. PubMed ID: 30072238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.