These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22398128)

  • 1. The contribution of thioredoxin-2 reductase and glutathione peroxidase to H(2)O(2) detoxification of rat brain mitochondria.
    Kudin AP; Augustynek B; Lehmann AK; Kovács R; Kunz WS
    Biochim Biophys Acta; 2012 Oct; 1817(10):1901-6. PubMed ID: 22398128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system.
    Drechsel DA; Patel M
    J Biol Chem; 2010 Sep; 285(36):27850-8. PubMed ID: 20558743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
    Lopert P; Patel M
    Redox Biol; 2014; 2():667-72. PubMed ID: 24936441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of auranofin on the mitochondrial generation of hydrogen peroxide. Role of thioredoxin reductase.
    Rigobello MP; Folda A; Baldoin MC; Scutari G; Bindoli A
    Free Radic Res; 2005 Jul; 39(7):687-95. PubMed ID: 16036347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thioredoxin and glutathione-dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays.
    Munro D; Banh S; Sotiri E; Tamanna N; Treberg JR
    Free Radic Biol Med; 2016 Jul; 96():334-46. PubMed ID: 27101737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H(2)O(2) detoxification in in vivo conditions.
    Antunes F; Han D; Cadenas E
    Free Radic Biol Med; 2002 Nov; 33(9):1260-7. PubMed ID: 12398934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells.
    Hirrlinger J; Resch A; Gutterer JM; Dringen R
    J Neurochem; 2002 Aug; 82(3):635-44. PubMed ID: 12153487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism.
    Mitozo PA; de Souza LF; Loch-Neckel G; Flesch S; Maris AF; Figueiredo CP; Dos Santos AR; Farina M; Dafre AL
    Free Radic Biol Med; 2011 Jul; 51(1):69-77. PubMed ID: 21440059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria.
    Stanley BA; Sivakumaran V; Shi S; McDonald I; Lloyd D; Watson WH; Aon MA; Paolocci N
    J Biol Chem; 2011 Sep; 286(38):33669-77. PubMed ID: 21832082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microglial cells in culture express a prominent glutathione system for the defense against reactive oxygen species.
    Hirrlinger J; Gutterer JM; Kussmaul L; Hamprecht B; Dringen R
    Dev Neurosci; 2000; 22(5-6):384-92. PubMed ID: 11111154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study.
    Aon MA; Stanley BA; Sivakumaran V; Kembro JM; O'Rourke B; Paolocci N; Cortassa S
    J Gen Physiol; 2012 Jun; 139(6):479-91. PubMed ID: 22585969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death.
    Dunning S; Ur Rehman A; Tiebosch MH; Hannivoort RA; Haijer FW; Woudenberg J; van den Heuvel FA; Buist-Homan M; Faber KN; Moshage H
    Biochim Biophys Acta; 2013 Dec; 1832(12):2027-34. PubMed ID: 23871839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in Reperfusion-Induced Mitochondrial Oxidative Stress and Cell Death Between Hippocampal CA1 and CA3 Subfields Are Due to the Mitochondrial Thioredoxin System.
    Yin B; Barrionuevo G; Batinic-Haberle I; Sandberg M; Weber SG
    Antioxid Redox Signal; 2017 Sep; 27(9):534-549. PubMed ID: 28129719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae.
    Trotter EW; Grant CM
    Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity.
    Zhang H; Limphong P; Pieper J; Liu Q; Rodesch CK; Christians E; Benjamin IJ
    FASEB J; 2012 Apr; 26(4):1442-51. PubMed ID: 22202674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of glutathione and glutathione-related enzyme systems in mitochondria and cytosol of cultured cerebellar astrocytes and granule cells.
    Huang J; Philbert MA
    Brain Res; 1995 May; 680(1-2):16-22. PubMed ID: 7663973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylglyoxal-Induced Protection Response and Toxicity: Role of Glutathione Reductase and Thioredoxin Systems.
    Schmitz AE; de Souza LF; Dos Santos B; Maher P; Lopes FM; Londero GF; Klamt F; Dafre AL
    Neurotox Res; 2017 Oct; 32(3):340-350. PubMed ID: 28478530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells.
    Dringen R; Hamprecht B
    Brain Res; 1997 Jun; 759(1):67-75. PubMed ID: 9219864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial adaptations to obesity-related oxidant stress.
    Yang S; Zhu H; Li Y; Lin H; Gabrielson K; Trush MA; Diehl AM
    Arch Biochem Biophys; 2000 Jun; 378(2):259-68. PubMed ID: 10860543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.