BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22398265)

  • 1. Handrail position and shape that best facilitate sit-to-stand movement.
    Kinoshita S
    J Back Musculoskelet Rehabil; 2012; 25(1):33-45. PubMed ID: 22398265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Handrail Height on Sit-To-Stand Movement.
    Kinoshita S; Kiyama R; Yoshimoto Y
    PLoS One; 2015; 10(7):e0133747. PubMed ID: 26207755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of handrail reaction forces between two different handrails during sit-to-stand movement in the elderly.
    Kato T; Sekiguchi Y; Honda K; Izumi SI; Kanetaka H
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105130. PubMed ID: 32745704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematics of rising from a chair: image-based analysis of the sagittal hip-spine movement pattern in elderly people who are healthy.
    Fotoohabadi MR; Tully EA; Galea MP
    Phys Ther; 2010 Apr; 90(4):561-71. PubMed ID: 20167645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral trunk displacement and stability during sit-to-stand transfer in relation to foot placement in patients with hemiparesis.
    Duclos C; Nadeau S; Lecours J
    Neurorehabil Neural Repair; 2008; 22(6):715-22. PubMed ID: 18812434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic and electromyographic analysis of rising from a chair during a "Sit-to-Walk" task in elderly subjects: role of strength.
    Dehail P; Bestaven E; Muller F; Mallet A; Robert B; Bourdel-Marchasson I; Petit J
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1096-103. PubMed ID: 17897758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics of sagittal spine and lower limb movement in healthy older adults during sit-to-stand from two seat heights.
    Kuo YL; Tully EA; Galea MP
    Spine (Phila Pa 1976); 2010 Jan; 35(1):E1-7. PubMed ID: 20042941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Patternizing" standards of sit-to-stand movements with support in cerebral palsy.
    Yonetsu R; Nitta O; Surya J
    NeuroRehabilitation; 2009; 25(4):289-96. PubMed ID: 20037222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the partially restricted sit-to-stand task on biomechanical variables in subjects with and without Parkinson's disease.
    de Souza LA; Curtarelli Mde B; Mukherjee M; Dionisio VC
    J Electromyogr Kinesiol; 2011 Oct; 21(5):719-26. PubMed ID: 21636290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of the sit-to-stand movement: a review.
    Janssen WG; Bussmann HB; Stam HJ
    Phys Ther; 2002 Sep; 82(9):866-79. PubMed ID: 12201801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of sit-to-stand motion using a pressure distribution measurement system--effect of differences in seat hardness on sit-to-stand motion.
    Sato S; Mizuma M; Kawate N; Kasai F; Watanabe H
    Disabil Rehabil Assist Technol; 2011; 6(4):290-8. PubMed ID: 20923319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic analysis of sit-to-stand assistive device for the elderly and disabled.
    Kim I; Cho W; Yuk G; Yang H; Jo BR; Min BH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975438. PubMed ID: 22275638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different handrail types and seat heights on kinematics and plantar pressure during STS in healthy young adults.
    Han X; Xue Q; Yang S; Zhang S; Li M
    Medicine (Baltimore); 2021 Dec; 100(49):e28091. PubMed ID: 34889261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional kinetics of the lumbar spine and hips in low back pain patients during sit-to-stand and stand-to-sit.
    Shum GL; Crosbie J; Lee RY
    Spine (Phila Pa 1976); 2007 Apr; 32(7):E211-9. PubMed ID: 17414896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Event standardization of sit-to-stand movements.
    Etnyre B; Thomas DQ
    Phys Ther; 2007 Dec; 87(12):1651-66. PubMed ID: 17940102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle activation and force production in Parkinson's patients during sit to stand transfers.
    Ramsey VK; Miszko TA; Horvat M
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):377-84. PubMed ID: 15109758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The speed of sit-to-stand can be modulated in Parkinson's disease.
    Mak MK; Hui-Chan CW
    Clin Neurophysiol; 2005 Apr; 116(4):780-9. PubMed ID: 15792887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints.
    Mathiyakom W; McNitt-Gray JL; Requejo P; Costa K
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):105-11. PubMed ID: 15567544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A body-fixed-sensor-based analysis of power during sit-to-stand movements.
    Zijlstra W; Bisseling RW; Schlumbohm S; Baldus H
    Gait Posture; 2010 Feb; 31(2):272-8. PubMed ID: 19963386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.