BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22398585)

  • 1. A phantom-based calibration method for digital x-ray tomosynthesis.
    Miao H; Wu X; Zhao H; Liu H
    J Xray Sci Technol; 2012; 20(1):17-29. PubMed ID: 22398585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
    Seyyedi S; Cengiz K; Kamasak M; Yildirim I
    Comput Math Methods Med; 2013; 2013():250689. PubMed ID: 24371468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to digital breast tomosynthesis for simultaneous acquisition of 2D and 3D images.
    Vecchio S; Albanese A; Vignoli P; Taibi A
    Eur Radiol; 2011 Jun; 21(6):1207-13. PubMed ID: 21193910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Key technologies in digital breast tomosynthesis system:theory, design, and optimization].
    Li M; Ma K; Tao X; Wang Y; He J; Wei Z; Chen G; Li S; Zeng D; Bian Z; Wu G; Liao S; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Feb; 39(2):192-200. PubMed ID: 30890508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A geometric calibration method for the digital chest tomosynthesis with dual-axis scanning geometry.
    Chang CH; Ni YC; Huang SY; Hsieh HH; Tseng SP; Tseng FP
    PLoS One; 2019; 14(4):e0216054. PubMed ID: 31022255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of reconstruction algorithms for C-arm mammography tomosynthesis.
    Rakowski JT; Dennis MJ
    Med Phys; 2006 Aug; 33(8):3018-32. PubMed ID: 16964880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of a three-dimensional linear system model for breast tomosynthesis.
    Zhao B; Zhou J; Hu YH; Mertelmeier T; Ludwig J; Zhao W
    Med Phys; 2009 Jan; 36(1):240-51. PubMed ID: 19235392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system.
    Schulz-Wendtland R; Wenkel E; Lell M; Böhner C; Bautz WA; Mertelmeier T
    Rofo; 2006 Dec; 178(12):1219-23. PubMed ID: 17136645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artifact reduction methods for truncated projections in iterative breast tomosynthesis reconstruction.
    Zhang Y; Chan HP; Sahiner B; Wei J; Zhou C; Hadjiiski LM
    J Comput Assist Tomogr; 2009; 33(3):426-35. PubMed ID: 19478639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity analysis of a geometric calibration method using projection matrices for digital tomosynthesis systems.
    Li X; Da Z; Liu B
    Med Phys; 2011 Jan; 38(1):202-9. PubMed ID: 21361188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.
    James JR; Pavlicek W; Hanson JA; Boltz TF; Patel BK
    AJR Am J Roentgenol; 2017 Feb; 208(2):362-372. PubMed ID: 28112559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of calibration phantom errors on dual-energy digital mammography.
    Mou X; Chen X; Sun L; Yu H; Ji Z; Zhang L
    Phys Med Biol; 2008 Nov; 53(22):6321-36. PubMed ID: 18936520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative image quality measurements of a digital breast tomosynthesis system.
    Olgar T; Kahn T; Gosch D
    Rofo; 2013 Dec; 185(12):1188-94. PubMed ID: 23888475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of back projection methods for breast tomosynthesis image reconstruction.
    Zhou W; Lu J; Zhou O; Chen Y
    J Digit Imaging; 2015 Jun; 28(3):338-45. PubMed ID: 25384538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.