BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22398591)

  • 1. Enhancement of breast calcification visualization and detection using a modified PG method in Cone Beam Breast CT.
    Liu J; Ning R; Cai W; Benitez RB
    J Xray Sci Technol; 2012; 20(1):107-20. PubMed ID: 22398591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality.
    O'Connell A; Conover DL; Zhang Y; Seifert P; Logan-Young W; Lin CF; Sahler L; Ning R
    AJR Am J Roentgenol; 2010 Aug; 195(2):496-509. PubMed ID: 20651210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cone-beam volume CT breast imaging: feasibility study.
    Chen B; Ning R
    Med Phys; 2002 May; 29(5):755-70. PubMed ID: 12033572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution dual detector volume-of-interest cone beam breast CT--Demonstration with a bench top system.
    Shen Y; Yi Y; Zhong Y; Lai CJ; Liu X; You Z; Ge S; Wang T; Shaw CC
    Med Phys; 2011 Dec; 38(12):6429-42. PubMed ID: 22149826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of malignant calcification identification between breast cone-beam computed tomography and digital mammography.
    Liu A; Ma Y; Yin L; Zhu Y; Lu H; Li H; Ye Z
    Acta Radiol; 2023 Mar; 64(3):962-970. PubMed ID: 35815702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcalcification detectability in breast CT images using CNN observers.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2024 Feb; 51(2):933-945. PubMed ID: 38154070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NPS characterization and evaluation of a cone beam CT breast imaging system.
    Benítez RB; Ning R; Conover D; Liu S
    J Xray Sci Technol; 2009; 17(1):17-40. PubMed ID: 19644211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcalcification detection using cone-beam CT mammography with a flat-panel imager.
    Gong X; Vedula AA; Glick SJ
    Phys Med Biol; 2004 Jun; 49(11):2183-95. PubMed ID: 15248571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.
    Kim H; Lee T; Hong J; Sabir S; Lee JR; Choi YW; Kim HH; Chae EY; Cho S
    Med Phys; 2017 Feb; 44(2):417-425. PubMed ID: 28032909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image denoising based on multiscale singularity detection for cone beam CT breast imaging.
    Zhong J; Ning R; Conover D
    IEEE Trans Med Imaging; 2004 Jun; 23(6):696-703. PubMed ID: 15191144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cone-beam breast computed tomography with a displaced flat panel detector array.
    Mettivier G; Russo P; Lanconelli N; Meo SL
    Med Phys; 2012 May; 39(5):2805-19. PubMed ID: 22559652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: visibility of simulated microcalcifications.
    Shen Y; Zhong Y; Lai CJ; Wang T; Shaw CC
    Med Phys; 2013 Oct; 40(10):101915. PubMed ID: 24089917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of propagation-based CT using synchrotron radiation and conventional cone-beam CT for breast imaging.
    Tavakoli Taba S; Baran P; Nesterets YI; Pacile S; Wienbeck S; Dullin C; Pavlov K; Maksimenko A; Lockie D; Mayo SC; Quiney HM; Dreossi D; Arfelli F; Tromba G; Lewis S; Gureyev TE; Brennan PC
    Eur Radiol; 2020 May; 30(5):2740-2750. PubMed ID: 31974689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Improvement of detectability of microcalcifications by magnification digital mammography].
    Higashida Y; Hatemura M; Yoshida A; Takada T; Takahashi M
    Nihon Igaku Hoshasen Gakkai Zasshi; 1998 Aug; 58(9):473-8. PubMed ID: 9778932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual resolution cone beam breast CT: a feasibility study.
    Chen L; Shen Y; Lai CJ; Han T; Zhong Y; Ge S; Liu X; Wang T; Yang WT; Whitman GJ; Shaw CC
    Med Phys; 2009 Sep; 36(9):4007-14. PubMed ID: 19810473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of angular dose distribution on the detection of microcalcifications in digital breast tomosynthesis.
    Hu YH; Zhao W
    Med Phys; 2011 May; 38(5):2455-66. PubMed ID: 21776781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of dual-energy digital mammography for calcification imaging.
    Kappadath SC; Shaw CC
    Phys Med Biol; 2004 Jun; 49(12):2563-76. PubMed ID: 15272674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.
    Matenine D; Mascolo-Fortin J; Goussard Y; Després P
    Med Phys; 2015 Nov; 42(11):6376-86. PubMed ID: 26520729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.
    Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H
    Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: a preliminary study.
    Reiser I; Nishikawa RM; Edwards AV; Kopans DB; Schmidt RA; Papaioannou J; Moore RH
    Med Phys; 2008 Apr; 35(4):1486-93. PubMed ID: 18491543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.