BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 22398786)

  • 1. Novel therapeutic targets for sepsis: regulation of exaggerated inflammatory responses.
    Matsuda A; Jacob A; Wu R; Aziz M; Yang WL; Matsutani T; Suzuki H; Furukawa K; Uchida E; Wang P
    J Nippon Med Sch; 2012; 79(1):4-18. PubMed ID: 22398786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Milk fat globule-EGF factor VIII in sepsis and ischemia-reperfusion injury.
    Matsuda A; Jacob A; Wu R; Zhou M; Nicastro JM; Coppa GF; Wang P
    Mol Med; 2011; 17(1-2):126-33. PubMed ID: 20882259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis.
    Miksa M; Wu R; Dong W; Das P; Yang D; Wang P
    Shock; 2006 Jun; 25(6):586-93. PubMed ID: 16721266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vagus nerve and the inflammatory reflex: wandering on a new treatment paradigm for systemic inflammation and sepsis.
    Huston JM
    Surg Infect (Larchmt); 2012 Aug; 13(4):187-93. PubMed ID: 22913335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Milk fat globule-epidermal growth factor-factor VIII attenuates sepsis-induced acute kidney injury.
    Cen C; Aziz M; Yang WL; Zhou M; Nicastro JM; Coppa GF; Wang P
    J Surg Res; 2017 Jun; 213():281-289. PubMed ID: 28601327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS.
    Li S; Wu H; Han D; Ma S; Fan W; Wang Y; Zhang R; Fan M; Huang Y; Fu X; Cao F
    Oxid Med Cell Longev; 2018; 2018():3537609. PubMed ID: 29636842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammasomes in Tissue Damages and Immune Disorders After Trauma.
    Bortolotti P; Faure E; Kipnis E
    Front Immunol; 2018; 9():1900. PubMed ID: 30166988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NLRP3 Inflammasome Deficiency Protects against Microbial Sepsis via Increased Lipoxin B
    Lee S; Nakahira K; Dalli J; Siempos II; Norris PC; Colas RA; Moon JS; Shinohara M; Hisata S; Howrylak JA; Suh GY; Ryter SW; Serhan CN; Choi AMK
    Am J Respir Crit Care Med; 2017 Sep; 196(6):713-726. PubMed ID: 28245134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Could stem cells be the future therapy for sepsis?
    Kingsley SM; Bhat BV
    Blood Rev; 2016 Nov; 30(6):439-452. PubMed ID: 27297212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: Novel therapeutic implications and challenges.
    Hattori Y; Hattori K; Suzuki T; Matsuda N
    Pharmacol Ther; 2017 Sep; 177():56-66. PubMed ID: 28232275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view.
    Schulte W; Bernhagen J; Bucala R
    Mediators Inflamm; 2013; 2013():165974. PubMed ID: 23853427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Pathophysiology and pathogens of sepsis].
    Hauber HP; Zabel P
    Internist (Berl); 2009 Jul; 50(7):779-80, 782-4, 786-7. PubMed ID: 19436978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A burning issue: do sepsis and systemic inflammatory response syndrome (SIRS) directly contribute to cardiac dysfunction?
    Ren J; Wu S
    Front Biosci; 2006 Jan; 11():15-22. PubMed ID: 16146710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host responses in mediating sepsis and adult respiratory distress syndrome.
    Strieter RM; Lynch JP; Basha MA; Standiford TJ; Kasahara K; Kunkel SL
    Semin Respir Infect; 1990 Sep; 5(3):233-47. PubMed ID: 2123991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment with milk fat globule epidermal growth factor-factor 8 (MFG-E8) reduces inflammation and lung injury in neonatal sepsis.
    Hansen LW; Yang WL; Bolognese AC; Jacob A; Chen T; Prince JM; Nicastro JM; Coppa GF; Wang P
    Surgery; 2017 Aug; 162(2):349-357. PubMed ID: 28343695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of phytochemicals in sepsis: A mechanistic and therapeutic perspective.
    Alikiaii B; Bagherniya M; Askari G; Johnston TP; Sahebkar A
    Biofactors; 2021 Jan; 47(1):19-40. PubMed ID: 33217777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sepsis and septic shock: pathophysiological and cardiovascular background as basis for therapy.
    De Kock I; Van Daele C; Poelaert J
    Acta Clin Belg; 2010; 65(5):323-9. PubMed ID: 21128559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflammatory mediators of cytokines and chemokines in sepsis: From bench to bedside.
    Doganyigit Z; Eroglu E; Akyuz E
    Hum Exp Toxicol; 2022; 41():9603271221078871. PubMed ID: 35337213
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of pro-and anti-inflammatory host responses.
    van der Poll T; van Zoelen MAD; Wiersinga WJ
    Contrib Microbiol; 2011; 17():125-136. PubMed ID: 21659750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in understanding sepsis.
    Shimaoka M; Park EJ
    Eur J Anaesthesiol Suppl; 2008; 42():146-53. PubMed ID: 18289433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.