These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22398832)

  • 21. A laboratory and field evaluation of Macrocyclops distinctus, Megacyclops viridis and Mesocyclops pehpeiensis as control agents of the dengue vector Aedes albopictus in a peridomestic area in Nagasaki, Japan.
    Dieng H; Boots M; Tuno N; Tsuda Y; Takagi M
    Med Vet Entomol; 2002 Sep; 16(3):285-91. PubMed ID: 12243229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus, against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae).
    Kovendan K; Murugan K; Vincent S; Barnard DR
    Parasitol Res; 2012 Jan; 110(1):195-203. PubMed ID: 21626422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti.
    Chowdhury N; Ghosh A; Chandra G
    BMC Complement Altern Med; 2008 Apr; 8():10. PubMed ID: 18387176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies.
    Chandramohan B; Murugan K; Panneerselvam C; Madhiyazhagan P; Chandirasekar R; Dinesh D; Kumar PM; Kovendan K; Suresh U; Subramaniam J; Rajaganesh R; Aziz AT; Syuhei B; Alsalhi MS; Devanesan S; Nicoletti M; Wei H; Benelli G
    Parasitol Res; 2016 Mar; 115(3):1015-25. PubMed ID: 26573518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae).
    Pilaquinga F; Morejón B; Ganchala D; Morey J; Piña N; Debut A; Neira M
    PLoS One; 2019; 14(10):e0224109. PubMed ID: 31671165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers.
    Chansang UR; Bhumiratana A; Kittayapong P
    J Vector Ecol; 2004 Dec; 29(2):218-26. PubMed ID: 15707281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative evaluation of fecundity and survivorship of six copepod (Copepoda: Cyclopidae) species, in relation to selection of candidate biological control agents against Aedes aegypti.
    Phong TV; Tuno N; Kawada H; Takagi M
    J Am Mosq Control Assoc; 2008 Mar; 24(1):61-9. PubMed ID: 18437816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Costa Rican copepods (Crustacea: Eudecapoda) for larval Aedes aegypti control with special reference to Mesocyclops thermocyclopoides.
    Schaper S
    J Am Mosq Control Assoc; 1999 Dec; 15(4):510-9. PubMed ID: 10612615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laboratory evaluation of the biocontrol potential of Mesocyclops thermocyclopoides (Copepoda: Cyclopidae) against mosquito larvae.
    Mittal PK; Dhiman RC; Adak T; Sharma VP
    Southeast Asian J Trop Med Public Health; 1997 Dec; 28(4):857-61. PubMed ID: 9656415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?
    Subramaniam J; Murugan K; Panneerselvam C; Kovendan K; Madhiyazhagan P; Kumar PM; Dinesh D; Chandramohan B; Suresh U; Nicoletti M; Higuchi A; Hwang JS; Kumar S; Alarfaj AA; Munusamy MA; Messing RH; Benelli G
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):20067-83. PubMed ID: 26300364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate Change May Restrict the Predation Efficiency of Mesocyclops aspericornis (Copepoda: Cyclopidae) on Aedes aegypti (Diptera: Culicidae) Larvae.
    Tuno N; Phong TV; Takagi M
    Insects; 2020 May; 11(5):. PubMed ID: 32423079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Larvicidal potential of ethanolic extracts of dried fruits of three species of peppercorns against different instars of an indian strain of dengue fever mosquito, Aedes aegypti L. (Diptera: Culicidae).
    Kumar S; Warikoo R; Wahab N
    Parasitol Res; 2010 Sep; 107(4):901-7. PubMed ID: 20549234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. National progress in dengue vector control in Vietnam: survey for Mesocyclops (Copepoda), Micronecta (Corixidae), and fish as biological control agents.
    Nam VS; Yen NT; Holynska M; Reid JW; Kay BH
    Am J Trop Med Hyg; 2000 Jan; 62(1):5-10. PubMed ID: 10761718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an eco-friendly mosquitocidal agent from Alangium salvifolium against the dengue vector Aedes aegypti and its biosafety on the aquatic predator.
    Thanigaivel A; Vasantha-Srinivasan P; Edwin ES; Ponsankar A; Selin-Rani S; Chellappandian M; Kalaivani K; Senthil-Nathan S; Benelli G
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10340-10352. PubMed ID: 28580548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).
    Suresh U; Murugan K; Benelli G; Nicoletti M; Barnard DR; Panneerselvam C; Kumar PM; Subramaniam J; Dinesh D; Chandramohan B
    Parasitol Res; 2015 Apr; 114(4):1551-62. PubMed ID: 25669140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods.
    Murugan K; Panneerselvam C; Subramaniam J; Madhiyazhagan P; Hwang JS; Wang L; Dinesh D; Suresh U; Roni M; Higuchi A; Nicoletti M; Benelli G
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16671-85. PubMed ID: 27180838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mosquito larvicidal and ovicidal properties of Eclipta alba (L.) Hassk (Asteraceae) against chikungunya vector, Aedes aegypti (Linn.) (Diptera: Culicidae).
    Govindarajan M; Karuppannan P
    Asian Pac J Trop Med; 2011 Jan; 4(1):24-8. PubMed ID: 21771410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of larvicidal efficacy of Solanum xanthocarpum storage against vector mosquitoes in north - western Rajasthan.
    Bansal SK; Singh KV; Sherwani MR
    J Environ Biol; 2009 Sep; 30(5 Suppl):883-8. PubMed ID: 20143723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses.
    Murugan K; Sanoopa CP; Madhiyazhagan P; Dinesh D; Subramaniam J; Panneerselvam C; Roni M; Suresh U; Nicoletti M; Alarfaj AA; Munusamy MA; Higuchi A; Kumar S; Perumalsamy H; Ahn YJ; Benelli G
    Nat Prod Res; 2016; 30(7):826-33. PubMed ID: 26284510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surveillance of the mosquito Aedes aegypti and its biocontrol with the copepod Mesocyclops aspericornis in Australian wells and gold mines.
    Russell BM; Muir LE; Weinstein P; Kay BH
    Med Vet Entomol; 1996 Apr; 10(2):155-60. PubMed ID: 8744708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.