BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 22398836)

  • 1. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex optical sensing with surface-enhanced Raman scattering: a critical review.
    Rodriguez-Lorenzo L; Fabris L; Alvarez-Puebla RA
    Anal Chim Acta; 2012 Oct; 745():10-23. PubMed ID: 22938601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device.
    Li B; Zhang W; Chen L; Lin B
    Electrophoresis; 2013 Aug; 34(15):2162-8. PubMed ID: 23712933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips.
    Chen L; Choo J
    Electrophoresis; 2008 May; 29(9):1815-28. PubMed ID: 18384070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection.
    Wang S; Liu C; Wang H; Chen G; Cong M; Song W; Jia Q; Xu S; Xu W
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11706-13. PubMed ID: 24978908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis.
    Stokes DL; Chi Z; Vo-Dinh T
    Appl Spectrosc; 2004 Mar; 58(3):292-8. PubMed ID: 15035709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis.
    Quang LX; Lim C; Seong GH; Choo J; Do KJ; Yoo SK
    Lab Chip; 2008 Dec; 8(12):2214-9. PubMed ID: 19023489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles.
    Neng J; Harpster MH; Wilson WC; Johnson PA
    Biosens Bioelectron; 2013 Mar; 41():316-21. PubMed ID: 23021841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics.
    Wilson R; Bowden SA; Parnell J; Cooper JM
    Anal Chem; 2010 Mar; 82(5):2119-23. PubMed ID: 20121214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform.
    Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK
    Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants.
    Yazdi SH; White IM
    Anal Chem; 2012 Sep; 84(18):7992-8. PubMed ID: 22924879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering.
    Chrimes AF; Khoshmanesh K; Stoddart PR; Kayani AA; Mitchell A; Daima H; Bansal V; Kalantar-zadeh K
    Anal Chem; 2012 May; 84(9):4029-35. PubMed ID: 22468827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering.
    Hassoun M; RĂ¼ger J; Kirchberger-Tolstik T; Schie IW; Henkel T; Weber K; Cialla-May D; Krafft C; Popp J
    Anal Bioanal Chem; 2018 Jan; 410(3):999-1006. PubMed ID: 28905087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules.
    Zhou J; Ren K; Zhao Y; Dai W; Wu H
    Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic fabrication of SERS-active microspheres for molecular detection.
    Hwang H; Kim SH; Yang SM
    Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres.
    Chon H; Lim C; Ha SM; Ahn Y; Lee EK; Chang SI; Seong GH; Choo J
    Anal Chem; 2010 Jun; 82(12):5290-5. PubMed ID: 20503972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optofluidic device for surface enhanced Raman spectroscopy.
    Wang M; Jing N; Chou IH; Cote GL; Kameoka J
    Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous detection of duplex DNA oligonucleotides using a SERS-based micro-network gradient chip.
    Choi N; Lee K; Lim DW; Lee EK; Chang SI; Oh KW; Choo J
    Lab Chip; 2012 Dec; 12(24):5160-7. PubMed ID: 23081724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.