These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
546 related articles for article (PubMed ID: 22398836)
1. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720. Fan M; Wang P; Escobedo C; Sinton D; Brolo AG Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836 [TBL] [Abstract][Full Text] [Related]
3. Multiplex optical sensing with surface-enhanced Raman scattering: a critical review. Rodriguez-Lorenzo L; Fabris L; Alvarez-Puebla RA Anal Chim Acta; 2012 Oct; 745():10-23. PubMed ID: 22938601 [TBL] [Abstract][Full Text] [Related]
4. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device. Li B; Zhang W; Chen L; Lin B Electrophoresis; 2013 Aug; 34(15):2162-8. PubMed ID: 23712933 [TBL] [Abstract][Full Text] [Related]
6. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Fan M; Brolo AG Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709 [TBL] [Abstract][Full Text] [Related]
7. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection. Wang S; Liu C; Wang H; Chen G; Cong M; Song W; Jia Q; Xu S; Xu W ACS Appl Mater Interfaces; 2014 Jul; 6(14):11706-13. PubMed ID: 24978908 [TBL] [Abstract][Full Text] [Related]
8. Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis. Stokes DL; Chi Z; Vo-Dinh T Appl Spectrosc; 2004 Mar; 58(3):292-8. PubMed ID: 15035709 [TBL] [Abstract][Full Text] [Related]
9. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Quang LX; Lim C; Seong GH; Choo J; Do KJ; Yoo SK Lab Chip; 2008 Dec; 8(12):2214-9. PubMed ID: 19023489 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles. Neng J; Harpster MH; Wilson WC; Johnson PA Biosens Bioelectron; 2013 Mar; 41():316-21. PubMed ID: 23021841 [TBL] [Abstract][Full Text] [Related]
11. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics. Wilson R; Bowden SA; Parnell J; Cooper JM Anal Chem; 2010 Mar; 82(5):2119-23. PubMed ID: 20121214 [TBL] [Abstract][Full Text] [Related]
12. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105 [TBL] [Abstract][Full Text] [Related]
13. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants. Yazdi SH; White IM Anal Chem; 2012 Sep; 84(18):7992-8. PubMed ID: 22924879 [TBL] [Abstract][Full Text] [Related]
14. Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering. Chrimes AF; Khoshmanesh K; Stoddart PR; Kayani AA; Mitchell A; Daima H; Bansal V; Kalantar-zadeh K Anal Chem; 2012 May; 84(9):4029-35. PubMed ID: 22468827 [TBL] [Abstract][Full Text] [Related]
15. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering. Hassoun M; RĂ¼ger J; Kirchberger-Tolstik T; Schie IW; Henkel T; Weber K; Cialla-May D; Krafft C; Popp J Anal Bioanal Chem; 2018 Jan; 410(3):999-1006. PubMed ID: 28905087 [TBL] [Abstract][Full Text] [Related]
16. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules. Zhou J; Ren K; Zhao Y; Dai W; Wu H Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic fabrication of SERS-active microspheres for molecular detection. Hwang H; Kim SH; Yang SM Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939 [TBL] [Abstract][Full Text] [Related]
18. On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Chon H; Lim C; Ha SM; Ahn Y; Lee EK; Chang SI; Seong GH; Choo J Anal Chem; 2010 Jun; 82(12):5290-5. PubMed ID: 20503972 [TBL] [Abstract][Full Text] [Related]
19. An optofluidic device for surface enhanced Raman spectroscopy. Wang M; Jing N; Chou IH; Cote GL; Kameoka J Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous detection of duplex DNA oligonucleotides using a SERS-based micro-network gradient chip. Choi N; Lee K; Lim DW; Lee EK; Chang SI; Oh KW; Choo J Lab Chip; 2012 Dec; 12(24):5160-7. PubMed ID: 23081724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]