These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 22398836)

  • 21. Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study.
    Park T; Lee S; Seong GH; Choo J; Lee EK; Kim YS; Ji WH; Hwang SY; Gweon DG; Lee S
    Lab Chip; 2005 Apr; 5(4):437-42. PubMed ID: 15791342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition.
    Hering KK; Möller R; Fritzsche W; Popp J
    Chemphyschem; 2008 Apr; 9(6):867-72. PubMed ID: 18386261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions.
    Huang GG; Han XX; Hossain MK; Ozaki Y
    Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R; Fang Y
    J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing.
    Andrade GF; Fan M; Brolo AG
    Biosens Bioelectron; 2010 Jun; 25(10):2270-5. PubMed ID: 20353887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A SERS-active microfluidic device with tunable surface plasmon resonances.
    Xu BB; Ma ZC; Wang H; Liu XQ; Zhang YL; Zhang XL; Zhang R; Jiang HB; Sun HB
    Electrophoresis; 2011 Nov; 32(23):3378-84. PubMed ID: 22072533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aptamer-based surface-enhanced Raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection.
    Fu C; Wang Y; Chen G; Yang L; Xu S; Xu W
    Anal Chem; 2015 Oct; 87(19):9555-8. PubMed ID: 26339871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Minimally invasive surface-enhanced Raman scattering detection with depth profiles based on a surface-enhanced Raman scattering-active acupuncture needle.
    Dong J; Chen Q; Rong C; Li D; Rao Y
    Anal Chem; 2011 Aug; 83(16):6191-5. PubMed ID: 21728307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.
    Lee S; Choi J; Chen L; Park B; Kyong JB; Seong GH; Choo J; Lee Y; Shin KH; Lee EK; Joo SW; Lee KH
    Anal Chim Acta; 2007 May; 590(2):139-44. PubMed ID: 17448337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light.
    Feng S; Chen R; Lin J; Pan J; Wu Y; Li Y; Chen J; Zeng H
    Biosens Bioelectron; 2011 Mar; 26(7):3167-74. PubMed ID: 21227679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transparent Raman-enhancing substrates for microbiological monitoring and in situ pollutant detection.
    Wang HH; Cheng TY; Sharma P; Chiang FY; Chiu SW; Wang JK; Wang YL
    Nanotechnology; 2011 Sep; 22(38):385702. PubMed ID: 21869461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of a bowl-shaped silver cavity substrate for SERS-based immunoassay.
    Tian S; Zhou Q; Gu Z; Gu X; Zheng J
    Analyst; 2013 May; 138(9):2604-12. PubMed ID: 23476921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis.
    Tong L; Righini M; Gonzalez MU; Quidant R; Käll M
    Lab Chip; 2009 Jan; 9(2):193-5. PubMed ID: 19107272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ SERS probing of nano-silver coated individual yeast cells.
    Chrimes AF; Khoshmanesh K; Tang SY; Wood BR; Stoddart PR; Collins SS; Mitchell A; Kalantar-zadeh K
    Biosens Bioelectron; 2013 Nov; 49():536-41. PubMed ID: 23827323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast electrically assisted regeneration of on-chip SERS substrates.
    Meier TA; Poehler E; Kemper F; Pabst O; Jahnke HG; Beckert E; Robitzki A; Belder D
    Lab Chip; 2015 Jul; 15(14):2923-7. PubMed ID: 26040796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optofluidic platforms based on surface-enhanced Raman scattering.
    Lim C; Hong J; Chung BG; deMello AJ; Choo J
    Analyst; 2010 May; 135(5):837-44. PubMed ID: 20419230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing.
    Kostovski G; White DJ; Mitchell A; Austin MW; Stoddart PR
    Biosens Bioelectron; 2009 Jan; 24(5):1531-5. PubMed ID: 19084390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device.
    Becker M; Budich C; Deckert V; Janasek D
    Analyst; 2009 Jan; 134(1):38-40. PubMed ID: 19082172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.