These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Stokes RJ; McBride E; Wilson CG; Girkin JM; Smith WE; Graham D Appl Spectrosc; 2008 Apr; 62(4):371-6. PubMed ID: 18416893 [TBL] [Abstract][Full Text] [Related]
48. Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced Raman scattering analysis of dyes. Cañamares MV; Garcia-Ramos JV; Gómez-Varga JD; Domingo C; Sanchez-Cortes S Langmuir; 2007 Apr; 23(9):5210-5. PubMed ID: 17381143 [TBL] [Abstract][Full Text] [Related]
49. Synthesis of core-shell surface-enhanced Raman tags for bioimaging. Liu X; Knauer M; Ivleva NP; Niessner R; Haisch C Anal Chem; 2010 Jan; 82(1):441-6. PubMed ID: 19957963 [TBL] [Abstract][Full Text] [Related]
50. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Kneipp J; Kneipp H; Rice WL; Kneipp K Anal Chem; 2005 Apr; 77(8):2381-5. PubMed ID: 15828770 [TBL] [Abstract][Full Text] [Related]
51. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Li D; Qu L; Zhai W; Xue J; Fossey JS; Long Y Environ Sci Technol; 2011 May; 45(9):4046-52. PubMed ID: 21486008 [TBL] [Abstract][Full Text] [Related]
52. Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Lo HC; Hsiung HI; Chattopadhyay S; Han HC; Chen CF; Leu JP; Chen KH; Chen LC Biosens Bioelectron; 2011 Jan; 26(5):2413-8. PubMed ID: 21044833 [TBL] [Abstract][Full Text] [Related]
53. Raman microspectroscopic study on polymerization and degradation processes of a diacetylene derivative at surface enhanced Raman scattering active substrates. 1. Reaction kinetics. Itoh K; Nishizawa T; Yamagata J; Fujii M; Osaka N; Kudryashov I J Phys Chem B; 2005 Jan; 109(1):264-70. PubMed ID: 16851012 [TBL] [Abstract][Full Text] [Related]
54. SERS--a single-molecule and nanoscale tool for bioanalytics. Kneipp J; Kneipp H; Kneipp K Chem Soc Rev; 2008 May; 37(5):1052-60. PubMed ID: 18443689 [TBL] [Abstract][Full Text] [Related]
55. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection. Deng Y; Idso MN; Galvan DD; Yu Q Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311 [TBL] [Abstract][Full Text] [Related]
56. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate. Peng C; Song Y; Wei G; Zhang W; Li Z; Dong WF J Colloid Interface Sci; 2008 Jan; 317(1):183-90. PubMed ID: 17931640 [TBL] [Abstract][Full Text] [Related]
57. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing. Kneipp J; Li X; Sherwood M; Panne U; Kneipp H; Stockman MI; Kneipp K Anal Chem; 2008 Jun; 80(11):4247-51. PubMed ID: 18439029 [TBL] [Abstract][Full Text] [Related]