These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 22398953)
1. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces. Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere. Wang WH; Zhang ZL; Xie YN; Wang L; Yi S; Liu K; Liu J; Pang DW; Zhao XZ Langmuir; 2007 Nov; 23(23):11924-31. PubMed ID: 17918864 [TBL] [Abstract][Full Text] [Related]
4. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Okushima S; Nisisako T; Torii T; Higuchi T Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471 [TBL] [Abstract][Full Text] [Related]
5. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Xu JH; Luo GS; Li SW; Chen GG Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080 [TBL] [Abstract][Full Text] [Related]
6. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Thelen J; Dickey MD; Ward T Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484 [TBL] [Abstract][Full Text] [Related]
7. Drop formation in non-planar microfluidic devices. Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475 [TBL] [Abstract][Full Text] [Related]
8. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Wang EN ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016 [TBL] [Abstract][Full Text] [Related]
9. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Bauer WA; Fischlechner M; Abell C; Huck WT Lab Chip; 2010 Jul; 10(14):1814-9. PubMed ID: 20442967 [TBL] [Abstract][Full Text] [Related]
11. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows. Mulligan MK; Rothstein JP Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665 [TBL] [Abstract][Full Text] [Related]
12. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. Park CI; Jeong HE; Lee SH; Cho HS; Suh KY J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991 [TBL] [Abstract][Full Text] [Related]
13. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers. Park Y; Pham TA; Beigie C; Cabodi M; Cleveland RO; Nagy JO; Wong JY Langmuir; 2015 Sep; 31(36):9762-70. PubMed ID: 26303989 [TBL] [Abstract][Full Text] [Related]
14. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation. Kobayashi T; Shimizu K; Kaizuma Y; Konishi S Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789 [TBL] [Abstract][Full Text] [Related]
15. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Liu H; Ju Y; Wang N; Xi G; Zhang Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585 [TBL] [Abstract][Full Text] [Related]
16. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A; Ionov L; Grundke K; Stamm M Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778 [TBL] [Abstract][Full Text] [Related]
17. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Yobas L; Martens S; Ong WL; Ranganathan N Lab Chip; 2006 Aug; 6(8):1073-9. PubMed ID: 16874381 [TBL] [Abstract][Full Text] [Related]
18. Generation of water-ionic liquid droplet pairs in soybean oil on microfluidic chip. Feng X; Yi Y; Yu X; Pang DW; Zhang ZL Lab Chip; 2010 Feb; 10(3):313-9. PubMed ID: 20091002 [TBL] [Abstract][Full Text] [Related]
19. A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer. Gu H; Duits MH; Mugele F Lab Chip; 2010 Jun; 10(12):1550-6. PubMed ID: 20517557 [TBL] [Abstract][Full Text] [Related]
20. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel. Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]