These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
630 related articles for article (PubMed ID: 22399070)
1. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. de Souza RF; Aravind L Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
3. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Du J; Jiang H; Lin H Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062 [TBL] [Abstract][Full Text] [Related]
4. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Aravind L; Zhang D; de Souza RF; Anand S; Iyer LM Curr Top Microbiol Immunol; 2015; 384():3-32. PubMed ID: 25027823 [TBL] [Abstract][Full Text] [Related]
5. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. Vogelsgesang M; Aktories K Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778 [TBL] [Abstract][Full Text] [Related]
6. [Role of the mono(ADP)ribosylation of proteins in cellular regulation]. Nemchinskaia VL Tsitologiia; 1988 Feb; 30(2):115-26. PubMed ID: 3131935 [TBL] [Abstract][Full Text] [Related]
7. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Han S; Tainer JA Int J Med Microbiol; 2002 Feb; 291(6-7):523-9. PubMed ID: 11890553 [TBL] [Abstract][Full Text] [Related]
8. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities. Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075 [TBL] [Abstract][Full Text] [Related]
9. A role of intracellular mono-ADP-ribosylation in cancer biology. Scarpa ES; Fabrizio G; Di Girolamo M FEBS J; 2013 Aug; 280(15):3551-62. PubMed ID: 23590234 [TBL] [Abstract][Full Text] [Related]
10. Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat. Ritter H; Koch-Nolte F; Marquez VE; Schulz GE Biochemistry; 2003 Sep; 42(34):10155-62. PubMed ID: 12939142 [TBL] [Abstract][Full Text] [Related]
11. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Lüscher B; Bütepage M; Eckei L; Krieg S; Verheugd P; Shilton BH Chem Rev; 2018 Feb; 118(3):1092-1136. PubMed ID: 29172462 [TBL] [Abstract][Full Text] [Related]
18. Homology modeling and molecular dynamics studies of a novel C3-like ADP-ribosyltransferase. Xiao JF; Li ZS; Sun CC Bioorg Med Chem; 2004 May; 12(9):2035-41. PubMed ID: 15080907 [TBL] [Abstract][Full Text] [Related]
19. Identification of regulatory domains in ADP-ribosyltransferase-1 that determine transferase and NAD glycohydrolase activities. Bourgeois C; Okazaki I; Cavanaugh E; Nightingale M; Moss J J Biol Chem; 2003 Jul; 278(29):26351-5. PubMed ID: 12721285 [TBL] [Abstract][Full Text] [Related]