These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 22399301)

  • 1. Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration.
    Zanou N; Schakman O; Louis P; Ruegg UT; Dietrich A; Birnbaumer L; Gailly P
    J Biol Chem; 2012 Apr; 287(18):14524-34. PubMed ID: 22399301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raptor and Rheb negatively regulate skeletal myogenesis through suppression of insulin receptor substrate 1 (IRS1).
    Ge Y; Yoon MS; Chen J
    J Biol Chem; 2011 Oct; 286(41):35675-35682. PubMed ID: 21852229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRPC1 regulates skeletal myoblast migration and differentiation.
    Louis M; Zanou N; Van Schoor M; Gailly P
    J Cell Sci; 2008 Dec; 121(Pt 23):3951-9. PubMed ID: 19001499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incomplete degeneration versus enhanced regeneration in skeletal muscle.
    Moyer AL; Wagner KR
    J Biol Chem; 2012 Jul; 287(30):25549; author reply 25550. PubMed ID: 22821807
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation.
    Formigli L; Sassoli C; Squecco R; Bini F; Martinesi M; Chellini F; Luciani G; Sbrana F; Zecchi-Orlandini S; Francini F; Meacci E
    J Cell Sci; 2009 May; 122(Pt 9):1322-33. PubMed ID: 19351713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation.
    Ijuin T; Takenawa T
    J Biol Chem; 2012 Sep; 287(37):31330-41. PubMed ID: 22815484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of PI3K catalytic subunit and Akt isoform deficiency on mTOR and p70S6K activation in myoblasts.
    Matheny RW; Adamo ML
    Biochem Biophys Res Commun; 2009 Dec; 390(2):252-7. PubMed ID: 19799871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L6 myoblast differentiation is modulated by Cdk5 via the PI3K-AKT-p70S6K signaling pathway.
    Sarker KP; Lee KY
    Oncogene; 2004 Aug; 23(36):6064-70. PubMed ID: 15208659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcumin-activated Wnt5a pathway mediates Ca
    Wang MY; Yang JM; Wu Y; Li H; Zhong YB; Luo Y; Xie RL
    J Cachexia Sarcopenia Muscle; 2024 Oct; 15(5):1834-1849. PubMed ID: 38982896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Akt phosphorylation and myogenic differentiation in PI3K p110β-deficient myoblasts is mediated by PI3K p110α and mTORC2.
    Matheny RW; Lynch CM; Leandry LA
    Growth Factors; 2012 Dec; 30(6):367-84. PubMed ID: 23137199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size.
    Trendelenburg AU; Meyer A; Rohner D; Boyle J; Hatakeyama S; Glass DJ
    Am J Physiol Cell Physiol; 2009 Jun; 296(6):C1258-70. PubMed ID: 19357233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation.
    Wilson EM; Tureckova J; Rotwein P
    Mol Biol Cell; 2004 Feb; 15(2):497-505. PubMed ID: 14595115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanidinoacetic Acid Regulates Myogenic Differentiation and Muscle Growth Through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K Signaling Pathway.
    Wang Y; Ma J; Qiu W; Zhang J; Feng S; Zhou X; Wang X; Jin L; Long K; Liu L; Xiao W; Tang Q; Zhu L; Jiang Y; Li X; Li M
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30235878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The myogenic factor Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification.
    Ustanina S; Carvajal J; Rigby P; Braun T
    Stem Cells; 2007 Aug; 25(8):2006-16. PubMed ID: 17495111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The collagen derived dipeptide hydroxyprolyl-glycine promotes C2C12 myoblast differentiation and myotube hypertrophy.
    Kitakaze T; Sakamoto T; Kitano T; Inoue N; Sugihara F; Harada N; Yamaji R
    Biochem Biophys Res Commun; 2016 Sep; 478(3):1292-7. PubMed ID: 27553280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective Effects of Sonic Hedgehog Against Ischemia/Reperfusion Injury in Mouse Skeletal Muscle via AKT/mTOR/p70S6K Signaling.
    Zeng Q; Fu Q; Wang X; Zhao Y; Liu H; Li Z; Li F
    Cell Physiol Biochem; 2017; 43(5):1813-1828. PubMed ID: 29065414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ataxia telangiectasia mutated impacts insulin-like growth factor 1 signalling in skeletal muscle.
    Ching JK; Luebbert SH; Collins RL; Zhang Z; Marupudi N; Banerjee S; Hurd RD; Ralston L; Fisher JS
    Exp Physiol; 2013 Feb; 98(2):526-35. PubMed ID: 22941977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective control of skeletal muscle differentiation by Akt1.
    Wilson EM; Rotwein P
    J Biol Chem; 2007 Feb; 282(8):5106-10. PubMed ID: 17218321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic inhibits myogenic differentiation and muscle regeneration.
    Yen YP; Tsai KS; Chen YW; Huang CF; Yang RS; Liu SH
    Environ Health Perspect; 2010 Jul; 118(7):949-56. PubMed ID: 20299303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.