BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22399316)

  • 1. Dynamic fuzziness during linker histone action.
    McBryant SJ; Hansen JC
    Adv Exp Med Biol; 2012; 725():15-26. PubMed ID: 22399316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex of linker histone H5 with the nucleosome and its implications for chromatin packing.
    Fan L; Roberts VA
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8384-9. PubMed ID: 16717183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure.
    Hao F; Mishra LN; Jaya P; Jones R; Hayes JJ
    Mol Cell Proteomics; 2022 Jul; 21(7):100250. PubMed ID: 35618225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctionality of the linker histones: an emerging role for protein-protein interactions.
    McBryant SJ; Lu X; Hansen JC
    Cell Res; 2010 May; 20(5):519-28. PubMed ID: 20309017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo.
    Brown DT; Izard T; Misteli T
    Nat Struct Mol Biol; 2006 Mar; 13(3):250-5. PubMed ID: 16462749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the structure and functions of the linker histone C-terminal tail domain.
    Lu X; Hansen JC
    Biochem Cell Biol; 2003 Jun; 81(3):173-6. PubMed ID: 12897851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and Functions of Linker Histones.
    Lyubitelev AV; Nikitin DV; Shaytan AK; Studitsky VM; Kirpichnikov MP
    Biochemistry (Mosc); 2016 Mar; 81(3):213-23. PubMed ID: 27262190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of maize chromatin-associated HMG proteins with mononucleosomes: role of core and linker histones.
    Lichota J; Grasser KD
    Biol Chem; 2003 Jul; 384(7):1019-27. PubMed ID: 12956418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain.
    Caterino TL; Fang H; Hayes JJ
    Mol Cell Biol; 2011 Jun; 31(11):2341-8. PubMed ID: 21464206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linker histone function in chromatin: dual mechanisms of action.
    Georgel PT; Hansen JC
    Biochem Cell Biol; 2001; 79(3):313-6. PubMed ID: 11467744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic condensation of linker histone C-terminal domain regulates chromatin structure.
    Luque A; Collepardo-Guevara R; Grigoryev S; Schlick T
    Nucleic Acids Res; 2014 Jul; 42(12):7553-60. PubMed ID: 24906881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core histone charge and linker histone H1 effects on the chromatin structure of Schizosaccharomyces pombe.
    Prieto E; Hizume K; Kobori T; Yoshimura SH; Takeyasu K
    Biosci Biotechnol Biochem; 2012; 76(12):2261-6. PubMed ID: 23221705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linker histone variants control chromatin dynamics during early embryogenesis.
    Saeki H; Ohsumi K; Aihara H; Ito T; Hirose S; Ura K; Kaneda Y
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5697-702. PubMed ID: 15821029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linker histones versus HMG1/2: a struggle for dominance?
    Zlatanova J; van Holde K
    Bioessays; 1998 Jul; 20(7):584-8. PubMed ID: 9723008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone variants--the structure behind the function.
    AusiĆ³ J
    Brief Funct Genomic Proteomic; 2006 Sep; 5(3):228-43. PubMed ID: 16772274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MeCP2 preferentially binds to methylated linker DNA in the absence of the terminal tail of histone H3 and independently of histone acetylation.
    Ishibashi T; Thambirajah AA; AusiĆ³ J
    FEBS Lett; 2008 Apr; 582(7):1157-62. PubMed ID: 18339321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linker Histone in Diseases.
    Ye X; Feng C; Gao T; Mu G; Zhu W; Yang Y
    Int J Biol Sci; 2017; 13(8):1008-1018. PubMed ID: 28924382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array.
    Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder.
    Lu X; Hamkalo B; Parseghian MH; Hansen JC
    Biochemistry; 2009 Jan; 48(1):164-72. PubMed ID: 19072710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.