These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22399316)

  • 21. [Linker histones: conformational changes and the role in the structural organization of chromatin].
    Chikhirzhina EV; Vorob'ev VI
    Tsitologiia; 2002; 44(8):721-36. PubMed ID: 12506665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatin accessibility to DNA minor groove ligands in vitro: role of linker histones and amino-terminal domains of octamer histones.
    Foderà R; Caneva R; Canzonetta C; Savino M
    Boll Soc Ital Biol Sper; 2000; 76(3-4):21-30. PubMed ID: 11449825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and dynamic properties of nucleosome core particles.
    Chakravarthy S; Park YJ; Chodaparambil J; Edayathumangalam RS; Luger K
    FEBS Lett; 2005 Feb; 579(4):895-8. PubMed ID: 15680970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Position and orientation of the globular domain of linker histone H5 on the nucleosome.
    Zhou YB; Gerchman SE; Ramakrishnan V; Travers A; Muyldermans S
    Nature; 1998 Sep; 395(6700):402-5. PubMed ID: 9759733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linker histone tails and N-tails of histone H3 are redundant: scanning force microscopy studies of reconstituted fibers.
    Leuba SH; Bustamante C; van Holde K; Zlatanova J
    Biophys J; 1998 Jun; 74(6):2830-9. PubMed ID: 9635737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determinants of histone H1 mobility and chromatin binding in living cells.
    Catez F; Ueda T; Bustin M
    Nat Struct Mol Biol; 2006 Apr; 13(4):305-10. PubMed ID: 16715048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
    Song F; Chen P; Sun D; Wang M; Dong L; Liang D; Xu RM; Zhu P; Li G
    Science; 2014 Apr; 344(6182):376-80. PubMed ID: 24763583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone.
    Ito T; Ikehara T; Nakagawa T; Kraus WL; Muramatsu M
    Genes Dev; 2000 Aug; 14(15):1899-907. PubMed ID: 10921904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of specific functional subdomains within the linker histone H10 C-terminal domain.
    Lu X; Hansen JC
    J Biol Chem; 2004 Mar; 279(10):8701-7. PubMed ID: 14668337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin dynamics of unfolding and refolding controlled by the nucleosome repeat length and the linker and core histones.
    Kobori T; Iwamoto S; Takeyasu K; Ohtani T
    Biopolymers; 2007 Mar; 85(4):295-307. PubMed ID: 17211885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies.
    Thakar A; Gupta P; Ishibashi T; Finn R; Silva-Moreno B; Uchiyama S; Fukui K; Tomschik M; Ausio J; Zlatanova J
    Biochemistry; 2009 Nov; 48(46):10852-7. PubMed ID: 19856965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatin compaction at the mononucleosome level.
    Tóth K; Brun N; Langowski J
    Biochemistry; 2006 Feb; 45(6):1591-8. PubMed ID: 16460006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry.
    Sridhar A; Farr SE; Portella G; Schlick T; Orozco M; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7216-7224. PubMed ID: 32165536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of salt on the binding of the linker histone H1 to DNA and nucleosomes.
    Al-Natour Z; Hassan AH
    DNA Cell Biol; 2007 Jun; 26(6):445-52. PubMed ID: 17570768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method for evaluating nucleosome stability with a protein-binding fluorescent dye.
    Taguchi H; Horikoshi N; Arimura Y; Kurumizaka H
    Methods; 2014 Dec; 70(2-3):119-26. PubMed ID: 25220913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.
    Bernier M; Luo Y; Nwokelo KC; Goodwin M; Dreher SJ; Zhang P; Parthun MR; Fondufe-Mittendorf Y; Ottesen JJ; Poirier MG
    Nat Commun; 2015 Dec; 6():10152. PubMed ID: 26648124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation.
    Lopez R; Sarg B; Lindner H; Bartolomé S; Ponte I; Suau P; Roque A
    Nucleic Acids Res; 2015 May; 43(9):4463-76. PubMed ID: 25870416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HMGN dynamics and chromatin function.
    Catez F; Lim JH; Hock R; Postnikov YV; Bustin M
    Biochem Cell Biol; 2003 Jun; 81(3):113-22. PubMed ID: 12897844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes.
    Duggan MM; Thomas JO
    J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mechanism for histone chaperoning activity of nucleoplasmin: thermodynamic and structural models.
    Taneva SG; Bañuelos S; Falces J; Arregi I; Muga A; Konarev PV; Svergun DI; Velázquez-Campoy A; Urbaneja MA
    J Mol Biol; 2009 Oct; 393(2):448-63. PubMed ID: 19683001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.