These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22399401)

  • 21. Origin and adaptation of green-sensitive (RH2) pigments in vertebrates.
    Yokoyama S; Jia H
    FEBS Open Bio; 2020 May; 10(5):873-882. PubMed ID: 32189477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetics of variation in human color vision and the retinal cone mosaic.
    Deeb SS
    Curr Opin Genet Dev; 2006 Jun; 16(3):301-7. PubMed ID: 16647849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding Cone Photoreceptor Cell Death in Achromatopsia.
    Carvalho LS; Vandenberghe LH
    Adv Exp Med Biol; 2016; 854():231-6. PubMed ID: 26427416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The retinal mosaics of opsin expression in invertebrates and vertebrates.
    Rister J; Desplan C
    Dev Neurobiol; 2011 Dec; 71(12):1212-26. PubMed ID: 21557510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.
    Jacobs GH
    Vis Neurosci; 2013 Mar; 30(1-2):39-53. PubMed ID: 23286388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Considering the Influence of Nonadaptive Evolution on Primate Color Vision.
    Jacobs RL; Bradley BJ
    PLoS One; 2016; 11(3):e0149664. PubMed ID: 26959829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The evolution of early vertebrate photoreceptors.
    Collin SP; Davies WL; Hart NS; Hunt DM
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2925-40. PubMed ID: 19720654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies on the stability of the human cone visual pigments.
    Ramon E; Mao X; Ridge KD
    Photochem Photobiol; 2009; 85(2):509-16. PubMed ID: 19192203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of vertebrate colour vision.
    Jacobs GH; Rowe MP
    Clin Exp Optom; 2004 Jul; 87(4-5):206-16. PubMed ID: 15312024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bipolar cell pathways for color vision in non-primate dichromats.
    Puller C; Haverkamp S
    Vis Neurosci; 2011 Jan; 28(1):51-60. PubMed ID: 21070688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dichromatic vision in a fruit bat with diurnal proclivities: the Samoan flying fox (Pteropus samoensis).
    Melin AD; Danosi CF; McCracken GF; Dominy NJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Dec; 200(12):1015-22. PubMed ID: 25319538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors.
    Flamarique IN; Cheng CL; Bergstrom C; Reimchen TE
    J Exp Biol; 2013 Feb; 216(Pt 4):656-67. PubMed ID: 23077162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of the evolution of animal colour vision and visual communication signals.
    Osorio D; Vorobyev M
    Vision Res; 2008 Sep; 48(20):2042-51. PubMed ID: 18627773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Current views on vision of mammals].
    Khokhlova TV
    Zh Obshch Biol; 2012; 73(6):418-34. PubMed ID: 23330397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive gene loss reflects differences in the visual ecology of basal vertebrates.
    Davies WL; Collin SP; Hunt DM
    Mol Biol Evol; 2009 Aug; 26(8):1803-9. PubMed ID: 19398493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.
    Yuan F; Bernard GD; Le J; Briscoe AD
    Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epistatic adaptive evolution of human color vision.
    Yokoyama S; Xing J; Liu Y; Faggionato D; Altun A; Starmer WT
    PLoS Genet; 2014 Dec; 10(12):e1004884. PubMed ID: 25522367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensory Ecology: In Sea Snake Vision, One Plus One Makes Three.
    Cronin TW
    Curr Biol; 2020 Jul; 30(13):R763-R766. PubMed ID: 32634416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seeing red to being red: conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles.
    Twyman H; Valenzuela N; Literman R; Andersson S; Mundy NI
    Proc Biol Sci; 2016 Aug; 283(1836):. PubMed ID: 27488652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.