These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 22399685)

  • 1. Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells.
    Lai F; Singh A; King ML
    Development; 2012 Apr; 139(8):1476-86. PubMed ID: 22399685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanos1 functions as a translational repressor in the Xenopus germline.
    Lai F; Zhou Y; Luo X; Fox J; King ML
    Mech Dev; 2011; 128(1-2):153-63. PubMed ID: 21195170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repression of zygotic gene expression in the Xenopus germline.
    Venkatarama T; Lai F; Luo X; Zhou Y; Newman K; King ML
    Development; 2010 Feb; 137(4):651-60. PubMed ID: 20110330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis.
    Xanthos JB; Kofron M; Wylie C; Heasman J
    Development; 2001 Jan; 128(2):167-80. PubMed ID: 11124113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development.
    Casey ES; Tada M; Fairclough L; Wylie CC; Heasman J; Smith JC
    Development; 1999 Oct; 126(19):4193-200. PubMed ID: 10477288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel role for
    Butler AM; Owens DA; Wang L; King ML
    Development; 2018 Jan; 145(1):. PubMed ID: 29158442
    [No Abstract]   [Full Text] [Related]  

  • 7. Pharyngeal endoderm expression of nanos1 is dispensable for craniofacial development.
    Na H; Park J; Jeon H; Jin S; Choe CP
    Gene Expr Patterns; 2021 Sep; 41():119202. PubMed ID: 34389512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation of Notch/Suppressor of Hairless pathway disturbs migration of primordial germ cells in Xenopus embryo.
    Morichika K; Kataoka K; Terayama K; Tazaki A; Kinoshita T; Watanabe K; Mochii M
    Dev Growth Differ; 2010 Feb; 52(2):235-44. PubMed ID: 20151992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maternal Dead-end 1 promotes translation of
    Aguero T; Jin Z; Chorghade S; Kalsotra A; King ML; Yang J
    Development; 2017 Oct; 144(20):3755-3765. PubMed ID: 28870987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis.
    Takeuchi T; Tanigawa Y; Minamide R; Ikenishi K; Komiya T
    Mech Dev; 2010; 127(1-2):146-58. PubMed ID: 19770040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined functions of two RRMs in Dead-end1 mimic helicase activity to promote nanos1 translation in the germline.
    Aguero T; Jin Z; Owens D; Malhotra A; Newman K; Yang J; King ML
    Mol Reprod Dev; 2018 Dec; 85(12):896-908. PubMed ID: 30230100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental regulation of locomotive activity in Xenopus primordial germ cells.
    Terayama K; Kataoka K; Morichika K; Orii H; Watanabe K; Mochii M
    Dev Growth Differ; 2013 Feb; 55(2):217-28. PubMed ID: 23278717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes.
    Nijjar S; Woodland HR
    PLoS One; 2013; 8(4):e61847. PubMed ID: 23626739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus germline nanos1 is translationally repressed by a novel structure-based mechanism.
    Luo X; Nerlick S; An W; King ML
    Development; 2011 Feb; 138(3):589-98. PubMed ID: 21205802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA-binding protein XSeb4R: a positive regulator of VegT mRNA stability and translation that is required for germ layer formation in Xenopus.
    Souopgui J; Rust B; Vanhomwegen J; Heasman J; Henningfeld KA; Bellefroid E; Pieler T
    Genes Dev; 2008 Sep; 22(17):2347-52. PubMed ID: 18765788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maternal Nanos-Dependent RNA Stabilization in the Primordial Germ Cells of Drosophila Embryos.
    Sugimori S; Kumata Y; Kobayashi S
    Dev Growth Differ; 2018 Jan; 60(1):63-75. PubMed ID: 29278271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primordial Germ Cell Isolation from Xenopus laevis Embryos.
    Butler AM; Aguero T; Newman KM; King ML
    Methods Mol Biol; 2017; 1463():115-124. PubMed ID: 27734352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VegT induces endoderm by a self-limiting mechanism and by changing the competence of cells to respond to TGF-beta signals.
    Clements D; Woodland HR
    Dev Biol; 2003 Jun; 258(2):454-63. PubMed ID: 12798301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray-based identification of VegT targets in Xenopus.
    Taverner NV; Kofron M; Shin Y; Kabitschke C; Gilchrist MJ; Wylie C; Cho KW; Heasman J; Smith JC
    Mech Dev; 2005 Mar; 122(3):333-54. PubMed ID: 15763211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VegT activation of Sox17 at the midblastula transition alters the response to nodal signals in the vegetal endoderm domain.
    Engleka MJ; Craig EJ; Kessler DS
    Dev Biol; 2001 Sep; 237(1):159-72. PubMed ID: 11518513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.