These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 22399991)
1. Prediction of force measurements of a microbend sensor based on an artificial neural network. Efendioglu HS; Yildirim T; Fidanboylu K Sensors (Basel); 2009; 9(9):7167-76. PubMed ID: 22399991 [TBL] [Abstract][Full Text] [Related]
2. Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique. Ghritlahre HK; Prasad RK J Environ Manage; 2018 Oct; 223():566-575. PubMed ID: 29975883 [TBL] [Abstract][Full Text] [Related]
3. An Artificial Neural Network Approach for the Prediction of Absorption Measurements of an Evanescent Field Fiber Sensor. Saracoglu ÖG Sensors (Basel); 2008 Mar; 8(3):1585-1594. PubMed ID: 27879782 [TBL] [Abstract][Full Text] [Related]
4. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage. Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of hydrogen production via steam reforming and partial oxidation of dimethyl ether using response surface methodology and artificial neural network. Mansouri K; Bahmanzadegan F; Ghaemi A Sci Rep; 2024 Jul; 14(1):15570. PubMed ID: 38971892 [TBL] [Abstract][Full Text] [Related]
6. Artificial neural networks applied to forecasting time series. Montaño Moreno JJ; Palmer Pol A; Muñoz Gracia P Psicothema; 2011 Apr; 23(2):322-9. PubMed ID: 21504688 [TBL] [Abstract][Full Text] [Related]
7. Predicting centre of mass horizontal speed in low to severe swimming intensities with linear and non-linear models. de Jesus K; de Jesus K; Ayala HVH; Dos Santos Coelho L; Vilas-Boas JP; Fernandes RJP J Sports Sci; 2019 Jul; 37(13):1512-1520. PubMed ID: 30724700 [TBL] [Abstract][Full Text] [Related]
8. The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa. Setshedi KJ; Mutingwende N; Ngqwala NP Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34069195 [TBL] [Abstract][Full Text] [Related]
9. Traffic accident reconstruction and an approach for prediction of fault rates using artificial neural networks: A case study in Turkey. Can Yilmaz A; Aci C; Aydin K Traffic Inj Prev; 2016 Aug; 17(6):585-9. PubMed ID: 26759925 [TBL] [Abstract][Full Text] [Related]
10. The application of artificial neural networks in modeling and predicting the effects of melatonin on morphological responses of citrus to drought stress. Jafari M; Shahsavar A PLoS One; 2020; 15(10):e0240427. PubMed ID: 33052940 [TBL] [Abstract][Full Text] [Related]
11. Predicting quality of life after breast cancer surgery using ANN-based models: performance comparison with MR. Tsai JT; Hou MF; Chen YM; Wan TT; Kao HY; Shi HY Support Care Cancer; 2013 May; 21(5):1341-50. PubMed ID: 23203653 [TBL] [Abstract][Full Text] [Related]
12. Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids. Benyekhlef A; Mohammedi B; Hassani D; Hanini S Water Sci Technol; 2021 Aug; 84(3):538-551. PubMed ID: 34388118 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control. Romani S; Cevoli C; Fabbri A; Alessandrini L; Dalla Rosa M J Food Sci; 2012 Sep; 77(9):C960-5. PubMed ID: 22908932 [TBL] [Abstract][Full Text] [Related]
14. Predictive modeling of membrane reactor efficiency using advanced artificial neural networks for green hydrogen production. Mahmoudi M; Ghaemi A; Rahbar Kelishami A; Movahedirad S Sci Rep; 2024 Oct; 14(1):24211. PubMed ID: 39407011 [TBL] [Abstract][Full Text] [Related]
15. Comparative performance analysis of support vector regression and artificial neural network for prediction of municipal solid waste generation. Jassim MS; Coskuner G; Zontul M Waste Manag Res; 2022 Feb; 40(2):195-204. PubMed ID: 33818220 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the Influential Factors on Eating Behaviors: A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks. Kheirollahpour MM; Danaee MM; Merican AFAF; Shariff AAAA ScientificWorldJournal; 2020; 2020():4194293. PubMed ID: 32508538 [TBL] [Abstract][Full Text] [Related]
17. Multiple linear regression and artificial neural networks for delta-endotoxin and protease yields modelling of Bacillus thuringiensis. Ennouri K; Ben Ayed R; Triki MA; Ottaviani E; Mazzarello M; Hertelli F; Zouari N 3 Biotech; 2017 Jul; 7(3):187. PubMed ID: 28664374 [TBL] [Abstract][Full Text] [Related]
18. Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling. Shafiq A; Çolak AB; Sindhu TN; Al-Mdallal QM; Abdeljawad T Sci Rep; 2021 Jul; 11(1):14509. PubMed ID: 34267255 [TBL] [Abstract][Full Text] [Related]
19. Predictive Models of Phytosterol Degradation in Rapeseeds Stored in Bulk Based on Artificial Neural Networks and Response Surface Regression. Wawrzyniak J; Rudzińska M; Gawrysiak-Witulska M; Przybył K Molecules; 2022 Apr; 27(8):. PubMed ID: 35458643 [TBL] [Abstract][Full Text] [Related]
20. Predicting Modified Fournier Index by Using Artificial Neural Network in Central Europe. Harsányi E; Bashir B; Alsilibe F; Moazzam MFU; Ratonyi T; Alsalman A; Széles A; Nyeki A; Takács I; Mohammed S Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]