BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 22400032)

  • 1. Murine models of B-cell lymphomas: promising tools for designing cancer therapies.
    Donnou S; Galand C; Touitou V; Sautès-Fridman C; Fabry Z; Fisson S
    Adv Hematol; 2012; 2012():701704. PubMed ID: 22400032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetically Engineered Mouse Models Support a Major Role of Immune Checkpoint-Dependent Immunosurveillance Escape in B-Cell Lymphomas.
    Lemasson Q; Akil H; Feuillard J; Vincent-Fabert C
    Front Immunol; 2021; 12():669964. PubMed ID: 34113345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells.
    Pizzi M; Boi M; Bertoni F; Inghirami G
    Leukemia; 2016 Sep; 30(9):1805-15. PubMed ID: 27389058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular Therapies for the Treatment of Hematological Malignancies; Swine Are an Ideal Preclinical Model.
    Duran-Struuck R; Huang CA; Matar AJ
    Front Oncol; 2019; 9():418. PubMed ID: 31293961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overview of the Use of Murine Models in Leukemia and Lymphoma Research.
    Kohnken R; Porcu P; Mishra A
    Front Oncol; 2017; 7():22. PubMed ID: 28265553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New targeted therapies for malignant lymphoma based on molecular heterogeneity.
    Horn H; Staiger AM; Ott G
    Expert Rev Hematol; 2017 Jan; 10(1):39-51. PubMed ID: 27918211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Preclinical Model for the ATLL Lymphoma Subtype With Insights Into the Role of Microenvironment in HTLV-1-Mediated Lymphomagenesis.
    Vicario M; Mattiolo A; Montini B; Piano MA; Cavallari I; Amadori A; Chieco-Bianchi L; Calabrò ML
    Front Microbiol; 2018; 9():1215. PubMed ID: 29951044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microenvironmental abnormalities induced by viral cooperation: Impact on lymphomagenesis.
    De Paoli P; Carbone A
    Semin Cancer Biol; 2015 Oct; 34():70-80. PubMed ID: 25837157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The B cell antigen receptor and overexpression of MYC can cooperate in the genesis of B cell lymphomas.
    Refaeli Y; Young RM; Turner BC; Duda J; Field KA; Bishop JM
    PLoS Biol; 2008 Jun; 6(6):e152. PubMed ID: 18578569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A murine model for B-cell lymphomagenesis in immunocompromised hosts: c-myc-rearranged B-cell lines with a premalignant phenotype.
    Felsher DW; Denis KA; Weiss D; Ando DT; Braun J
    Cancer Res; 1990 Nov; 50(21):7042-9. PubMed ID: 2208171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of posttransplant lymphomas that express T-cell-associated markers: immunophenotypes, molecular genetics, cytogenetics, and heterotransplantation in severe combined immunodeficient mice.
    Waller EK; Ziemianska M; Bangs CD; Cleary M; Weissman I; Kamel OW
    Blood; 1993 Jul; 82(1):247-61. PubMed ID: 8100721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular classification of aggressive lymphomas-past, present, future.
    Wienand K; Chapuy B
    Hematol Oncol; 2021 Jun; 39 Suppl 1():24-30. PubMed ID: 34105819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans.
    Hathcock KS; Padilla-Nash HM; Camps J; Shin DM; Triner D; Shaffer AL; Maul RW; Steinberg SM; Gearhart PJ; Staudt LM; Morse HC; Ried T; Hodes RJ
    Blood; 2015 Nov; 126(20):2291-301. PubMed ID: 26400962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injection of human primary effusion lymphoma cells or associated macrophages into severe combined immunodeficient mice causes murine lymphomas.
    Zenger E; Abbey NW; Weinstein MD; Kapp L; Reis J; Gofman I; Millward C; Gascon R; Elbaggari A; Herndier BG; McGrath MS
    Cancer Res; 2002 Oct; 62(19):5536-42. PubMed ID: 12359765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the Immune Microenvironment in Lymphomas of B-Cell Origin: From Biology to Clinical Application.
    Mulder TA; Wahlin BE; Österborg A; Palma M
    Cancers (Basel); 2019 Jun; 11(7):. PubMed ID: 31261914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor Microenvironment of Lymphomas and Plasma Cell Neoplasms: Broad Overview and Impact on Evaluation for Immune Based Therapies.
    Perincheri S
    Front Oncol; 2021; 11():719140. PubMed ID: 34956859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Clinical Applications and Future Perspectives of Immune Checkpoint Inhibitors in Non-Hodgkin Lymphoma.
    Apostolidis J; Sayyed A; Darweesh M; Kaloyannidis P; Al Hashmi H
    J Immunol Res; 2020; 2020():9350272. PubMed ID: 33178841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tumor microenvironment of lymphomas: Insights into the potential role and modes of actions of checkpoint inhibitors.
    Menter T; Tzankov A; Dirnhofer S
    Hematol Oncol; 2021 Feb; 39(1):3-10. PubMed ID: 33105031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preclinical study of Ublituximab, a Glycoengineered anti-human CD20 antibody, in murine models of primary cerebral and intraocular B-cell lymphomas.
    Ben Abdelwahed R; Donnou S; Ouakrim H; Crozet L; Cosette J; Jacquet A; Tourais I; Fournès B; Gillard Bocquet M; Miloudi A; Touitou V; Daussy C; Naud MC; Fridman WH; Sautès-Fridman C; Urbain R; Fisson S
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3657-65. PubMed ID: 23611989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking Immunoevasion and Metabolic Reprogramming in B-Cell-Derived Lymphomas.
    Böttcher M; Baur R; Stoll A; Mackensen A; Mougiakakos D
    Front Oncol; 2020; 10():594782. PubMed ID: 33251150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.