These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22400239)

  • 1. Detection of change in fluorescence between reactive cyan and the yellow fluorophores using a-SiC:H multilayer transducers.
    Vieira M; Costa J; Vieira MA; Louro P; Fernandes M; Fantoni A
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8657-62. PubMed ID: 22400239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayer architectures based on a-SiC:H material: tunable wavelength filters in optical processing devices.
    Vieira M; Vieira MA; Louro P; Costa J; Fernandes M; Fantoni A; Barata M
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5299-304. PubMed ID: 21770179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel genetically encoded fluorescent protein as a Cu(I) indicator.
    Yan X; Li X; Lv SS; He DC
    Dalton Trans; 2012 Jan; 41(3):727-9. PubMed ID: 22127465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins.
    Rizzo MA; Springer G; Segawa K; Zipfel WR; Piston DW
    Microsc Microanal; 2006 Jun; 12(3):238-54. PubMed ID: 17481360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer from cyan to yellow fluorescent protein validates a novel method to cluster proteins on solid surfaces.
    Madeira C; Estrela N; Ferreira JA; Andrade SM; Costa SM; Melo EP
    J Biomed Opt; 2009; 14(4):044035. PubMed ID: 19725746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer.
    Shimozono S; Hosoi H; Mizuno H; Fukano T; Tahara T; Miyawaki A
    Biochemistry; 2006 May; 45(20):6267-71. PubMed ID: 16700538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer.
    Karasawa S; Araki T; Nagai T; Mizuno H; Miyawaki A
    Biochem J; 2004 Jul; 381(Pt 1):307-12. PubMed ID: 15065984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH sensitivity of FRET reporters based on cyan and yellow fluorescent proteins.
    Betolngar DB; Erard M; Pasquier H; Bousmah Y; Diop-Sy A; Guiot E; Vincent P; Mérola F
    Anal Bioanal Chem; 2015 May; 407(14):4183-93. PubMed ID: 25814274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoswitchable cyan fluorescent protein as a FRET donor.
    Souslova EA; Chudakov DM
    Microsc Res Tech; 2006 Mar; 69(3):207-9. PubMed ID: 16538627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring protein interactions in the living cell through the fluorescence decays of the cyan fluorescent protein.
    Grailhe R; Merola F; Ridard J; Couvignou S; Le Poupon C; Changeux JP; Laguitton-Pasquier H
    Chemphyschem; 2006 Jul; 7(7):1442-54. PubMed ID: 16739159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting protein-protein interaction in live yeast by flow cytometry.
    Dye BT; Schell K; Miller DJ; Ahlquist P
    Cytometry A; 2005 Feb; 63(2):77-86. PubMed ID: 15651008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair.
    Zimmermann T; Rietdorf J; Girod A; Georget V; Pepperkok R
    FEBS Lett; 2002 Nov; 531(2):245-9. PubMed ID: 12417320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fanciful FRET.
    Vogel SS; Thaler C; Koushik SV
    Sci STKE; 2006 Apr; 2006(331):re2. PubMed ID: 16622184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced dynamic range in a genetically encoded Ca2+ sensor.
    Liu S; He J; Jin H; Yang F; Lu J; Yang J
    Biochem Biophys Res Commun; 2011 Aug; 412(1):155-9. PubMed ID: 21806972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of FRET-positive cells using single 408-nm laser flow cytometry.
    van Wageningen S; Pennings AH; van der Reijden BA; Boezeman JB; de Lange F; Jansen JH
    Cytometry A; 2006 Apr; 69(4):291-8. PubMed ID: 16498686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius.
    Kremers GJ; Goedhart J; van Munster EB; Gadella TW
    Biochemistry; 2006 May; 45(21):6570-80. PubMed ID: 16716067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission.
    van Rheenen J; Langeslag M; Jalink K
    Biophys J; 2004 Apr; 86(4):2517-29. PubMed ID: 15041688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering genetically encoded FRET-based nanosensors for real time display of arsenic (As
    Soleja N; Manzoor O; Khan P; Mohsin M
    Sci Rep; 2019 Aug; 9(1):11240. PubMed ID: 31375744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers.
    Evers TH; van Dongen EM; Faesen AC; Meijer EW; Merkx M
    Biochemistry; 2006 Nov; 45(44):13183-92. PubMed ID: 17073440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.