These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Brownian motors: current fluctuations and rectification efficiency. Machura L; Kostur M; Talkner P; Łuczka J; Marchesoni F; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061105. PubMed ID: 15697339 [TBL] [Abstract][Full Text] [Related]
4. Stochastic transport of interacting particles in periodically driven ratchets. Savel'ev S; Marchesoni F; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061107. PubMed ID: 15697341 [TBL] [Abstract][Full Text] [Related]
5. Controlling the motion of interacting particles: homogeneous systems and binary mixtures. Savel'ev S; Nori F Chaos; 2005 Jun; 15(2):26112. PubMed ID: 16035914 [TBL] [Abstract][Full Text] [Related]
6. Subdiffusive rocking ratchets in viscoelastic media: transport optimization and thermodynamic efficiency in overdamped regime. Kharchenko VO; Goychuk I Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052119. PubMed ID: 23767499 [TBL] [Abstract][Full Text] [Related]
7. Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Matthias S; Müller F Nature; 2003 Jul; 424(6944):53-7. PubMed ID: 12840755 [TBL] [Abstract][Full Text] [Related]
8. Diffusion of finite-size particles in confined geometries. Bruna M; Chapman SJ Bull Math Biol; 2014 Apr; 76(4):947-82. PubMed ID: 23660951 [TBL] [Abstract][Full Text] [Related]
9. Brownian molecular motors driven by rotation-translation coupling. Geislinger B; Kawai R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011912. PubMed ID: 16907132 [TBL] [Abstract][Full Text] [Related]
11. Self-propelled Janus particles in a ratchet: numerical simulations. Ghosh PK; Misko VR; Marchesoni F; Nori F Phys Rev Lett; 2013 Jun; 110(26):268301. PubMed ID: 23848928 [TBL] [Abstract][Full Text] [Related]
12. Entropic dynamical hysteresis in a driven system. Mondal D; Das M; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031128. PubMed ID: 22587059 [TBL] [Abstract][Full Text] [Related]
13. Collective dynamics in systems of active Brownian particles with dissipative interactions. Lobaskin V; Romenskyy M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052135. PubMed ID: 23767515 [TBL] [Abstract][Full Text] [Related]
14. Robust unidirectional rotation in three-tooth Brownian rotary ratchet systems. Tutu H; Nagata S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022144. PubMed ID: 23496496 [TBL] [Abstract][Full Text] [Related]
15. Transport of active ellipsoidal particles in ratchet potentials. Ai BQ; Wu JC J Chem Phys; 2014 Mar; 140(9):094103. PubMed ID: 24606349 [TBL] [Abstract][Full Text] [Related]
16. Diffusion in confined geometries. Burada PS; Hänggi P; Marchesoni F; Schmid G; Talkner P Chemphyschem; 2009 Jan; 10(1):45-54. PubMed ID: 19025741 [TBL] [Abstract][Full Text] [Related]
18. Semiclassical treatment of a Brownian ratchet using the quantum Smoluchowski equation. Cleary L; Coffey WT; Kalmykov YP; Titov SV Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051106. PubMed ID: 20364946 [TBL] [Abstract][Full Text] [Related]
19. Entropic transport of finite size particles. Riefler W; Schmid G; Burada PS; Hänggi P J Phys Condens Matter; 2010 Nov; 22(45):454109. PubMed ID: 21339597 [TBL] [Abstract][Full Text] [Related]
20. Optimal estimates of the diffusion coefficient of a single Brownian trajectory. Boyer D; Dean DS; Mejía-Monasterio C; Oshanin G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031136. PubMed ID: 22587067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]