These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 22400528)

  • 1. Linear polymers in disordered media: the shortest, the longest, and the mean self-avoiding walk on percolation clusters.
    Janssen HK; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011123. PubMed ID: 22400528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling behavior of linear polymers in disordered media.
    Janssen HK; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):020801. PubMed ID: 17358306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifractal behavior of linear polymers in disordered media.
    Ordemann A; Porto M; Roman HE; Havlin S; Bunde A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6858-65. PubMed ID: 11088378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Logarithmic corrections to scaling in critical percolation and random resistor networks.
    Stenull O; Janssen HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036129. PubMed ID: 14524854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universality classes for self-avoiding walks in a strongly disordered system.
    Braunstein LA; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056128. PubMed ID: 12059668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution functions in percolation problems.
    Janssen HK; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011128. PubMed ID: 19257022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-avoiding walks on Sierpinski lattices in two and three dimensions.
    Ordemann A; Porto M; Roman HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021107. PubMed ID: 11863503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymptotic scaling behavior of self-avoiding walks on critical percolation clusters.
    Fricke N; Janke W
    Phys Rev Lett; 2014 Dec; 113(25):255701. PubMed ID: 25554895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density fluctuations of polymers in disordered media.
    Deutsch JM; de la Cruz MO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031801. PubMed ID: 21517516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loop-erased random walk on a percolation cluster: crossover from Euclidean to fractal geometry.
    Daryaei E; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062101. PubMed ID: 25019719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifractality of self-avoiding walks on percolation clusters.
    Blavatska V; Janke W
    Phys Rev Lett; 2008 Sep; 101(12):125701. PubMed ID: 18851389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling exponents for a monkey on a tree: fractal dimensions of randomly branched polymers.
    Janssen HK; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051126. PubMed ID: 23004722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear random resistor diode networks and fractal dimensions of directed percolation clusters.
    Stenull O; Janssen HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016135. PubMed ID: 11461359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loop-erased random walk on a percolation cluster is compatible with Schramm-Loewner evolution.
    Daryaei E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022129. PubMed ID: 25215710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent structural behavior of self-avoiding walks on three-dimensional Sierpinski sponges.
    Fritsche M; Heermann DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051119. PubMed ID: 20866197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Percolation in a kinetic opinion exchange model.
    Chandra AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021149. PubMed ID: 22463194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diluted networks of nonlinear resistors and fractal dimensions of percolation clusters.
    Janssen HK; Stenull O
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt A):4821-34. PubMed ID: 11031523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymers in long-range-correlated disorder.
    Blavats'ka V; von Ferber C; Holovatch Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041102. PubMed ID: 11690005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of percolation theory to microtomography of structured media: percolation threshold, critical exponents, and upscaling.
    Liu J; Regenauer-Lieb K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016106. PubMed ID: 21405743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution.
    Stenull O; Janssen HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036103. PubMed ID: 11308705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.