These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 22400533)
1. Connecting the microdynamics to the emergent macrovariables: self-organized criticality and absorbing phase transitions in the Deterministic Lattice Gas. Giometto A; Jensen HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011128. PubMed ID: 22400533 [TBL] [Abstract][Full Text] [Related]
2. Determination of the critical exponents for absorbing phase transitions in the conserved lattice gas model in three dimensions. Lee SB Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):022101. PubMed ID: 22463263 [TBL] [Abstract][Full Text] [Related]
3. Critical behavior of absorbing phase transitions for models in the Manna class with natural initial states. Lee SB Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062133. PubMed ID: 25019750 [TBL] [Abstract][Full Text] [Related]
4. Towards the simplest hydrodynamic lattice-gas model. Boghosian BM; Love PJ; Meyer DA Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):333-44. PubMed ID: 16214684 [TBL] [Abstract][Full Text] [Related]
6. Kosterlitz-Thouless and Potts transitions in a generalized XY model. Canova GA; Levin Y; Arenzon JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012126. PubMed ID: 24580191 [TBL] [Abstract][Full Text] [Related]
7. Scaling behavior of the absorbing phase transition in a conserved lattice gas around the upper critical dimension. Lübeck S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016123. PubMed ID: 11461347 [TBL] [Abstract][Full Text] [Related]
8. Abelian Manna model in three dimensions and below. Huynh HN; Pruessner G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061133. PubMed ID: 23005077 [TBL] [Abstract][Full Text] [Related]
9. First-order phase transitions in repulsive rigid k-mers on two-dimensional lattices. Pasinetti PM; Romá F; Ramirez-Pastor AJ J Chem Phys; 2012 Feb; 136(6):064113. PubMed ID: 22360175 [TBL] [Abstract][Full Text] [Related]
10. Experimental realization of directed percolation criticality in turbulent liquid crystals. Takeuchi KA; Kuroda M; Chaté H; Sano M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051116. PubMed ID: 20364956 [TBL] [Abstract][Full Text] [Related]
11. Self-organized criticality and absorbing states: lessons from the Ising model. Pruessner G; Peters O Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):025106. PubMed ID: 16605383 [TBL] [Abstract][Full Text] [Related]
13. Unification of hierarchical reference theory and self-consistent Ornstein-Zernike approximation: analysis of the critical region for fluids and lattice gases. Høye JS Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021114. PubMed ID: 19391713 [TBL] [Abstract][Full Text] [Related]
14. Quenched disorder forbids discontinuous transitions in nonequilibrium low-dimensional systems. Villa Martín P; Bonachela JA; Muñoz MA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012145. PubMed ID: 24580210 [TBL] [Abstract][Full Text] [Related]
15. Peculiar thermodynamics of the second critical point in supercooled water. Bertrand CE; Anisimov MA J Phys Chem B; 2011 Dec; 115(48):14099-111. PubMed ID: 21661753 [TBL] [Abstract][Full Text] [Related]
16. Universality class of the conserved Manna model in one dimension. Lee SB Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):060101. PubMed ID: 25019704 [TBL] [Abstract][Full Text] [Related]
17. Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices. de Oliveira MM; Alves SG; Ferreira SC Phys Rev E; 2016 Jan; 93(1):012110. PubMed ID: 26871027 [TBL] [Abstract][Full Text] [Related]
18. Geodesics in information geometry: classical and quantum phase transitions. Kumar P; Mahapatra S; Phukon P; Sarkar T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051117. PubMed ID: 23214748 [TBL] [Abstract][Full Text] [Related]
19. Quantifying reversibility in a phase-separating lattice gas: an analogy with self-assembly. Grant J; Jack RL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021112. PubMed ID: 22463158 [TBL] [Abstract][Full Text] [Related]
20. Order-disorder transition in a model with two symmetric absorbing states. Park SC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041140. PubMed ID: 22680451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]