These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 22400637)
1. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637 [TBL] [Abstract][Full Text] [Related]
2. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states. Choe CU; Dahms T; Hövel P; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621 [TBL] [Abstract][Full Text] [Related]
3. Controlling cluster synchronization by adapting the topology. Lehnert J; Hövel P; Selivanov A; Fradkov A; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042914. PubMed ID: 25375574 [TBL] [Abstract][Full Text] [Related]
4. Synchronization of networks of oscillators with distributed delay coupling. Kyrychko YN; Blyuss KB; Schöll E Chaos; 2014 Dec; 24(4):043117. PubMed ID: 25554037 [TBL] [Abstract][Full Text] [Related]
5. Amplitude and phase effects on the synchronization of delay-coupled oscillators. D'Huys O; Vicente R; Danckaert J; Fischer I Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097 [TBL] [Abstract][Full Text] [Related]
6. Bipartite networks of oscillators with distributed delays: Synchronization branches and multistability. Punetha N; Ramaswamy R; Atay FM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042906. PubMed ID: 25974561 [TBL] [Abstract][Full Text] [Related]
7. Bifurcation analysis of multistability of synchronous states in the system of two delay-coupled oscillators. Adilova AB; Balakin MI; Gerasimova SA; Ryskin NM Chaos; 2021 Nov; 31(11):113103. PubMed ID: 34881617 [TBL] [Abstract][Full Text] [Related]
8. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Chaos; 2018 Mar; 28(3):033110. PubMed ID: 29604660 [TBL] [Abstract][Full Text] [Related]
9. Fading of remote synchronization in tree networks of Stuart-Landau oscillators. Karakaya B; Minati L; Gambuzza LV; Frasca M Phys Rev E; 2019 May; 99(5-1):052301. PubMed ID: 31212500 [TBL] [Abstract][Full Text] [Related]
11. Control of amplitude chimeras by time delay in oscillator networks. Gjurchinovski A; Schöll E; Zakharova A Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829 [TBL] [Abstract][Full Text] [Related]
12. Enhancing coherence via tuning coupling range in nonlocally coupled Stuart-Landau oscillators. Zhao N; Sun Z; Xu W Sci Rep; 2018 Jun; 8(1):8721. PubMed ID: 29880922 [TBL] [Abstract][Full Text] [Related]
13. A common lag scenario in quenching of oscillation in coupled oscillators. Suresh K; Sabarathinam S; Thamilmaran K; Kurths J; Dana SK Chaos; 2016 Aug; 26(8):083104. PubMed ID: 27586600 [TBL] [Abstract][Full Text] [Related]
14. Phase-flip transition in nonlinear oscillators coupled by dynamic environment. Sharma A; Shrimali MD; Dana SK Chaos; 2012 Jun; 22(2):023147. PubMed ID: 22757554 [TBL] [Abstract][Full Text] [Related]
15. Frequency discontinuity and amplitude death with time-delay asymmetry. Punetha N; Karnatak R; Prasad A; Kurths J; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046204. PubMed ID: 22680553 [TBL] [Abstract][Full Text] [Related]
16. Delayed feedback control of synchronization in weakly coupled oscillator networks. Novičenko V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022919. PubMed ID: 26382488 [TBL] [Abstract][Full Text] [Related]
17. Aging transition in mixed active and inactive fractional-order oscillators. Sun Z; Liu Y; Liu K; Yang X; Xu W Chaos; 2019 Oct; 29(10):103150. PubMed ID: 31675845 [TBL] [Abstract][Full Text] [Related]
18. Chaos synchronization by resonance of multiple delay times. Martin MJ; D'Huys O; Lauerbach L; Korutcheva E; Kinzel W Phys Rev E; 2016 Feb; 93(2):022206. PubMed ID: 26986330 [TBL] [Abstract][Full Text] [Related]
19. Clustering in delay-coupled smooth and relaxational chemical oscillators. Blaha K; Lehnert J; Keane A; Dahms T; Hövel P; Schöll E; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062915. PubMed ID: 24483539 [TBL] [Abstract][Full Text] [Related]
20. Impact of symmetry breaking in networks of globally coupled oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052915. PubMed ID: 26066237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]