These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 22400637)

  • 21. Synchronization and beam forming in an array of repulsively coupled oscillators.
    Rulkov NF; Tsimring L; Larsen ML; Gabbay M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056205. PubMed ID: 17279982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplitude death of identical oscillators in networks with direct coupling.
    Illing L
    Phys Rev E; 2016 Aug; 94(2-1):022215. PubMed ID: 27627306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states.
    Lee WS; Ott E; Antonsen TM
    Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive coupling and enhanced synchronization in coupled phase oscillators.
    Ren Q; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016207. PubMed ID: 17677543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronization of intermittent behavior in ensembles of multistable dynamical systems.
    Sevilla-Escoboza R; Buldú JM; Pisarchik AN; Boccaletti S; Gutiérrez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032902. PubMed ID: 25871167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emergent dynamics in delayed attractive-repulsively coupled networks.
    Kundu P; Sharma L; Nandan M; Ghosh D; Hens C; Pal P
    Chaos; 2019 Jan; 29(1):013112. PubMed ID: 30709156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chimera states in two-dimensional networks of locally coupled oscillators.
    Kundu S; Majhi S; Bera BK; Ghosh D; Lakshmanan M
    Phys Rev E; 2018 Feb; 97(2-1):022201. PubMed ID: 29548198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations.
    Nagao R; Zou W; Kurths J; Kiss IZ
    Chaos; 2016 Sep; 26(9):094808. PubMed ID: 27781452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions.
    Dixit S; Nag Chowdhury S; Prasad A; Ghosh D; Shrimali MD
    Chaos; 2021 Jan; 31(1):011105. PubMed ID: 33754786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occasional coupling enhances amplitude death in delay-coupled oscillators.
    Ghosh A; Mondal S; Sujith RI
    Chaos; 2022 Oct; 32(10):101106. PubMed ID: 36319273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oscillation death in diffusively coupled oscillators by local repulsive link.
    Hens CR; Olusola OI; Pal P; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):034902. PubMed ID: 24125390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging chimera states under nonidentical counter-rotating oscillators.
    Sathiyadevi K; Chandrasekar VK; Lakshmanan M
    Phys Rev E; 2022 Mar; 105(3-1):034211. PubMed ID: 35428132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oscillation behavior driven by processing delay in diffusively coupled inactive systems: Cluster synchronization and multistability.
    Yao C; He Z; Zou W
    Chaos; 2020 Dec; 30(12):123137. PubMed ID: 33380058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable and transient multicluster oscillation death in nonlocally coupled networks.
    Schneider I; Kapeller M; Loos S; Zakharova A; Fiedler B; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052915. PubMed ID: 26651770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amplitude death in oscillator networks with variable-delay coupling.
    Gjurchinovski A; Zakharova A; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032915. PubMed ID: 24730921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamical effects of breaking rotational symmetry in counter-rotating Stuart-Landau oscillators.
    Punetha N; Varshney V; Sahoo S; Saxena G; Prasad A; Ramaswamy R
    Phys Rev E; 2018 Aug; 98(2-1):022212. PubMed ID: 30253578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamical robustness of coupled heterogeneous oscillators.
    Tanaka G; Morino K; Daido H; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052906. PubMed ID: 25353860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synchronization of phase oscillators with frequency-weighted coupling.
    Xu C; Sun Y; Gao J; Qiu T; Zheng Z; Guan S
    Sci Rep; 2016 Feb; 6():21926. PubMed ID: 26903110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators.
    Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M
    Phys Rev E; 2016 Jul; 94(1-1):012311. PubMed ID: 27575152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation.
    Schneider I
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120472. PubMed ID: 23960230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.