These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 22400637)

  • 41. Tuning coupling rate to control oscillation quenching in fractional-order coupled oscillators.
    Liu S; Sun Z; Zhao N
    Chaos; 2020 Oct; 30(10):103108. PubMed ID: 33138455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Limits on Anti-Phase Synchronization in Oscillator Networks.
    Vathakkattil Joseph G; Pakrashi V
    Sci Rep; 2020 Jun; 10(1):10178. PubMed ID: 32576893
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two mechanisms of remote synchronization in a chain of Stuart-Landau oscillators.
    Kumar M; Rosenblum M
    Phys Rev E; 2021 Nov; 104(5-1):054202. PubMed ID: 34942824
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-delay-induced spiral chimeras on a spherical surface of globally coupled oscillators.
    Kim RS; Choe CU
    Phys Rev E; 2023 Nov; 108(5-1):054204. PubMed ID: 38115537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multistable states in a system of coupled phase oscillators with inertia.
    Yuan D; Lin F; Wang L; Liu D; Yang J; Xiao Y
    Sci Rep; 2017 Feb; 7():42178. PubMed ID: 28176829
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Asymmetry in initial cluster size favors symmetry in a network of oscillators.
    Majhi S; Muruganandam P; Ferreira FF; Ghosh D; Dana SK
    Chaos; 2018 Aug; 28(8):081101. PubMed ID: 30180614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Control of delay-induced oscillation death by coupling phase in coupled oscillators.
    Zou W; Lu J; Tang Y; Zhang C; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066208. PubMed ID: 22304179
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hierarchical transitions in multiplex adaptive networks of oscillatory units.
    Maslennikov OV; Nekorkin VI
    Chaos; 2018 Dec; 28(12):121101. PubMed ID: 30599540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predictions of ultraharmonic oscillations in coupled arrays of limit cycle oscillators.
    Landsman AS; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036204. PubMed ID: 17025726
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamics of multilayer networks with amplification.
    Njougouo T; Camargo V; Louodop P; Fagundes Ferreira F; Talla PK; Cerdeira HA
    Chaos; 2020 Dec; 30(12):123136. PubMed ID: 33380025
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mobility and density induced amplitude death in metapopulation networks of coupled oscillators.
    Shen C; Chen H; Hou Z
    Chaos; 2014 Dec; 24(4):043125. PubMed ID: 25554045
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators.
    Sun Z; Xiao R; Yang X; Xu W
    Chaos; 2018 Mar; 28(3):033109. PubMed ID: 29604642
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimal weighted networks of phase oscillators for synchronization.
    Tanaka T; Aoyagi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046210. PubMed ID: 18999511
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amplitude and phase dynamics in oscillators with distributed-delay coupling.
    Kyrychko YN; Blyuss KB; Schöll E
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120466. PubMed ID: 23960224
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Local complexity predicts global synchronization of hierarchically networked oscillators.
    Xu J; Park DH; Jo J
    Chaos; 2017 Jul; 27(7):073116. PubMed ID: 28764405
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cluster synchronization in networked nonidentical chaotic oscillators.
    Wang Y; Wang L; Fan H; Wang X
    Chaos; 2019 Sep; 29(9):093118. PubMed ID: 31575156
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unstable delayed feedback control to change sign of coupling strength for weakly coupled limit cycle oscillators.
    Novičenko V; Ratas I
    Chaos; 2021 Sep; 31(9):093138. PubMed ID: 34598474
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators.
    Banerjee T; Biswas D; Ghosh D; Bandyopadhyay B; Kurths J
    Phys Rev E; 2018 Apr; 97(4-1):042218. PubMed ID: 29758758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion.
    Banerjee T; Biswas D
    Chaos; 2013 Dec; 23(4):043101. PubMed ID: 24387540
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metastability and chimera states in modular delay and pulse-coupled oscillator networks.
    Wildie M; Shanahan M
    Chaos; 2012 Dec; 22(4):043131. PubMed ID: 23278066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.