These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22400642)

  • 1. Chaotic escape from an open vase-shaped cavity. II. Topological theory.
    Novick J; Delos JB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016206. PubMed ID: 22400642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometry and topology of escape. II. Homotopic lobe dynamics.
    Mitchell KA; Handley JP; Delos JB; Knudson SK
    Chaos; 2003 Sep; 13(3):892-902. PubMed ID: 12946181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaotic escape from an open vase-shaped cavity. I. Numerical and experimental results.
    Novick J; Keeler ML; Giefer J; Delos JB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016205. PubMed ID: 22400641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using periodic orbits to compute chaotic transport rates between resonance zones.
    Sattari S; Mitchell KA
    Chaos; 2017 Nov; 27(11):113104. PubMed ID: 29195324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary homoclinic bifurcation theorems.
    Rom-Kedar V
    Chaos; 1995 Jun; 5(2):385-401. PubMed ID: 12780192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometry and topology of escape. I. Epistrophes.
    Mitchell KA; Handley JP; Tighe B; Delos JB; Knudson SK
    Chaos; 2003 Sep; 13(3):880-91. PubMed ID: 12946180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using heteroclinic orbits to quantify topological entropy in fluid flows.
    Sattari S; Chen Q; Mitchell KA
    Chaos; 2016 Mar; 26(3):033112. PubMed ID: 27036190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment.
    Pinto RD; Sartorelli JC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):342-7. PubMed ID: 11046271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escape of trajectories from a vase-shaped cavity.
    Hansen P; Mitchell KA; Delos JB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066226. PubMed ID: 16906965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase space conduits for reaction in multidimensional systems: HCN isomerization in three dimensions.
    Waalkens H; Burbanks A; Wiggins S
    J Chem Phys; 2004 Oct; 121(13):6207-25. PubMed ID: 15446914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometry of complex instability and escape in four-dimensional symplectic maps.
    Stöber J; Bäcker A
    Phys Rev E; 2021 Apr; 103(4-1):042208. PubMed ID: 34005971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic transport of navigation satellites.
    Gkolias I; Daquin J; Skoulidou DK; Tsiganis K; Efthymiopoulos C
    Chaos; 2019 Oct; 29(10):101106. PubMed ID: 31675796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC; Macau EE; Rosa RR
    Chaos; 2004 Sep; 14(3):545-56. PubMed ID: 15446964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic bursting at the onset of unstable dimension variability.
    Viana RL; Pinto SE; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046213. PubMed ID: 12443305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetric replicator dynamics with depletable resources.
    Mitchener WG
    Chaos; 2022 Apr; 32(4):043121. PubMed ID: 35489865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological analysis of chaotic transport through a ballistic atom pump.
    Byrd TA; Delos JB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022907. PubMed ID: 25353545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of "leaking" Hamiltonian systems.
    Schneider J; Tél T; Neufeld Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066218. PubMed ID: 12513395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase space structure and chaotic scattering in near-integrable systems.
    Koch BP; Bruhn B
    Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heteroclinic and homoclinic connections in a Kolmogorov-like flow.
    Suri B; Pallantla RK; Schatz MF; Grigoriev RO
    Phys Rev E; 2019 Jul; 100(1-1):013112. PubMed ID: 31499915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise induced escape from a nonhyperbolic chaotic attractor of a periodically driven nonlinear oscillator.
    Chen Z; Li Y; Liu X
    Chaos; 2016 Jun; 26(6):063112. PubMed ID: 27368777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.