BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22400658)

  • 1. Deformation of a single red blood cell in bounded Poiseuille flows.
    Shi L; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016307. PubMed ID: 22400658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows.
    Shi L; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056308. PubMed ID: 23214877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis of dynamic interaction of two red blood cells in a capillary.
    Li H; Ye T; Lam KY
    Cell Biochem Biophys; 2014 Jul; 69(3):673-80. PubMed ID: 24590262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K; Wada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow.
    Yazdani AZ; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026314. PubMed ID: 21929097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T; Pan TW; Xing ZW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041916. PubMed ID: 19518265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):114-28. PubMed ID: 23293072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic modes of red blood cells in oscillatory shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061920. PubMed ID: 20866453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional vesicle dynamics under shear flow: effect of confinement.
    Kaoui B; Harting J; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066319. PubMed ID: 21797489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic interaction between two nonspherical capsules in shear flow.
    Le DV; Chiam KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056322. PubMed ID: 22181513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.
    Aouane O; Thiébaud M; Benyoussef A; Wagner C; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033011. PubMed ID: 25314533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swinging and synchronized rotations of red blood cells in simple shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021902. PubMed ID: 19792146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary.
    Ye T; Li H; Lam KY
    Microvasc Res; 2010 Dec; 80(3):453-63. PubMed ID: 20643152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-free state of the red blood cell membrane and the deformation of its skeleton.
    Svelc T; Svetina S
    Cell Mol Biol Lett; 2012 Jun; 17(2):217-27. PubMed ID: 22302416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.