These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 22400671)
1. Electromagnetic propulsion and separation by chirality of nanoparticles in liquids. Kirkinis E; Andreev AV; Spivak B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016321. PubMed ID: 22400671 [TBL] [Abstract][Full Text] [Related]
2. Photoinduced separation of chiral isomers in a classical buffer gas. Spivak B; Andreev AV Phys Rev Lett; 2009 Feb; 102(6):063004. PubMed ID: 19257586 [TBL] [Abstract][Full Text] [Related]
3. Chirality in electromagnetic radiation from relativistic electrons. Katoh M; Fujimoto M; Salehi E; Hosaka M; Kawaguchi H Chirality; 2024; 36(5):e23677. PubMed ID: 38752253 [TBL] [Abstract][Full Text] [Related]
4. Magnetoanalysis of micro/nanoparticles: a review. Suwa M; Watarai H Anal Chim Acta; 2011 Apr; 690(2):137-47. PubMed ID: 21435469 [TBL] [Abstract][Full Text] [Related]
6. Separation and alignment of chiral active particles in a rotational magnetic field. Lin FJ; Liao JJ; Ai BQ J Chem Phys; 2020 Jun; 152(22):224903. PubMed ID: 32534555 [TBL] [Abstract][Full Text] [Related]
7. Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam. Hernández RJ; Sevilla FJ; Mazzulla A; Pagliusi P; Pellizzi N; Cipparrone G Soft Matter; 2020 Sep; 16(33):7704-7714. PubMed ID: 32734983 [TBL] [Abstract][Full Text] [Related]
8. Measures of chirality and angular momentum in the electromagnetic field. Andrews DL; Coles MM Opt Lett; 2012 Aug; 37(15):3009-11. PubMed ID: 22859068 [TBL] [Abstract][Full Text] [Related]
9. Ratchet transport powered by chiral active particles. Ai BQ Sci Rep; 2016 Jan; 6():18740. PubMed ID: 26795952 [TBL] [Abstract][Full Text] [Related]
10. Electromagnetic Signatures of the Chiral Anomaly in Weyl Semimetals. Barnes E; Heremans JJ; Minic D Phys Rev Lett; 2016 Nov; 117(21):217204. PubMed ID: 27911555 [TBL] [Abstract][Full Text] [Related]
11. Optical forces on small magnetodielectric particles. Nieto-Vesperinas M; Sáenz JJ; Gómez-Medina R; Chantada L Opt Express; 2010 May; 18(11):11428-43. PubMed ID: 20589003 [TBL] [Abstract][Full Text] [Related]
12. Current-induced spin-orbit torques. Gambardella P; Miron IM Philos Trans A Math Phys Eng Sci; 2011 Aug; 369(1948):3175-97. PubMed ID: 21727120 [TBL] [Abstract][Full Text] [Related]
14. Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings. Jing L; Wang Z; Lin X; Zheng B; Xu S; Shen L; Yang Y; Gao F; Chen M; Chen H Research (Wash D C); 2019; 2019():3806132. PubMed ID: 31549059 [TBL] [Abstract][Full Text] [Related]
15. Rectification of chiral active particles driven by transversal temperature difference. Ai BQ; Li JJ; Li ZQ; Xiong JW; He YF J Chem Phys; 2019 May; 150(18):184905. PubMed ID: 31091931 [TBL] [Abstract][Full Text] [Related]
16. Measuring chirality in NMR in the presence of a time-dependent electric field. Walls JD; Harris RA J Chem Phys; 2014 Jun; 140(23):234201. PubMed ID: 24952533 [TBL] [Abstract][Full Text] [Related]
17. Response of a doublet to a nearby dc electrode of uniform potential. Wirth CL; Nuthalapati SH Phys Rev E; 2016 Oct; 94(4-1):042614. PubMed ID: 27841644 [TBL] [Abstract][Full Text] [Related]
18. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Barbulovic-Nad I; Xuan X; Lee JS; Li D Lab Chip; 2006 Feb; 6(2):274-9. PubMed ID: 16450038 [TBL] [Abstract][Full Text] [Related]
19. Contactless cell trapping by the use of a uniform AC electric field. Tada S; Natsuya T; Tsukamoto A; Santo Y Biorheology; 2013; 50(5-6):283-303. PubMed ID: 24398610 [TBL] [Abstract][Full Text] [Related]
20. The effects of nanoparticles uptaken by cells on electrorotation. Chuang CH; Hsu YM; Yeh CC Electrophoresis; 2009 May; 30(9):1449-56. PubMed ID: 19350546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]