BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22400789)

  • 1. Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional flows.
    Kantsler V; Goldstein RE
    Phys Rev Lett; 2012 Jan; 108(3):038103. PubMed ID: 22400789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buckling transition of a semiflexible filament in extensional flow.
    Manikantan H; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):041002. PubMed ID: 26565158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological transitions of elastic filaments in shear flow.
    Liu Y; Chakrabarti B; Saintillan D; Lindner A; du Roure O
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9438-9443. PubMed ID: 30181295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic interactions of filaments polymerizing against obstacles.
    Nazockdast E
    Cytoskeleton (Hoboken); 2019 Nov; 76(11-12):586-599. PubMed ID: 31600850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformations, hydrodynamic interactions, and instabilities of sedimenting semiflexible filaments.
    Saggiorato G; Elgeti J; Winkler RG; Gompper G
    Soft Matter; 2015 Oct; 11(37):7337-44. PubMed ID: 26270609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of twist-bend coupling in actin filaments.
    De La Cruz EM; Roland J; McCullough BR; Blanchoin L; Martiel JL
    Biophys J; 2010 Sep; 99(6):1852-60. PubMed ID: 20858430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous oscillations of elastic filaments induced by molecular motors.
    De Canio G; Lauga E; Goldstein RE
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29167371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoskeletal bundle mechanics.
    Bathe M; Heussinger C; Claessens MM; Bausch AR; Frey E
    Biophys J; 2008 Apr; 94(8):2955-64. PubMed ID: 18055529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rods-on-string idealization captures semiflexible filament dynamics.
    Chandran PL; Mofrad MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011906. PubMed ID: 19257068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transverse Fluctuations Control the Assembly of Semiflexible Filaments.
    Sorichetti V; Lenz M
    Phys Rev Lett; 2023 Dec; 131(22):228401. PubMed ID: 38101392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bending fluctuations in semiflexible, inextensible, slender filaments in Stokes flow: Toward a spectral discretization.
    Maxian O; Sprinkle B; Donev A
    J Chem Phys; 2023 Apr; 158(15):. PubMed ID: 37094016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin filament dynamics using microfluidics.
    Carlier MF; Romet-Lemonne G; Jégou A
    Methods Enzymol; 2014; 540():3-17. PubMed ID: 24630098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal fracture kinetics of heterogeneous semiflexible polymers.
    Lorenzo AM; De La Cruz EM; Koslover EF
    Soft Matter; 2020 Feb; 16(8):2017-2024. PubMed ID: 31996875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of extension-torsion coupling of actin filaments.
    Matsushita S; Inoue Y; Adachi T
    Biochem Biophys Res Commun; 2012 Apr; 420(4):710-3. PubMed ID: 22366037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical heterogeneity favors fragmentation of strained actin filaments.
    De La Cruz EM; Martiel JL; Blanchoin L
    Biophys J; 2015 May; 108(9):2270-81. PubMed ID: 25954884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Actin Bundle Rheology.
    Strehle D; Mollenkopf P; Glaser M; Golde T; Schuldt C; Käs JA; Schnauß J
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29064446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active chiral fluids.
    Fürthauer S; Strempel M; Grill SW; Jülicher F
    Eur Phys J E Soft Matter; 2012 Sep; 35(9):89. PubMed ID: 23001784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of single semiflexible filaments under geometric constraints.
    Köster S; Kierfeld J; Pfohl T
    Eur Phys J E Soft Matter; 2008 Apr; 25(4):439-49. PubMed ID: 18425410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The advantages of microfluidics to study actin biochemistry and biomechanics.
    Wioland H; Suzuki E; Cao L; Romet-Lemonne G; Jegou A
    J Muscle Res Cell Motil; 2020 Mar; 41(1):175-188. PubMed ID: 31749040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capturing 3D large-strain Euler-bending filament dynamics in fibrous media simulations; sample case of compression collapse in dendritic actin network.
    Simhadri JJ; Chandran PL
    Sci Rep; 2019 Mar; 9(1):3990. PubMed ID: 30850656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.