These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22400793)

  • 1. No evidence of magnitude clustering in an aftershock sequence of nano- and picoseismicity.
    Davidsen J; Kwiatek G; Dresen G
    Phys Rev Lett; 2012 Jan; 108(3):038501. PubMed ID: 22400793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Earthquake interevent time distribution for induced micro-, nano-, and picoseismicity.
    Davidsen J; Kwiatek G
    Phys Rev Lett; 2013 Feb; 110(6):068501. PubMed ID: 23432312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical physics models for aftershocks and induced seismicity.
    Luginbuhl M; Rundle JB; Turcotte DL
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 377(2136):. PubMed ID: 30478209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnitude-dependent epidemic-type aftershock sequences model for earthquakes.
    Spassiani I; Sebastiani G
    Phys Rev E; 2016 Apr; 93():042134. PubMed ID: 27176281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous power law distribution of total lifetimes of branching processes: application to earthquake aftershock sequences.
    Saichev A; Sornette D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046123. PubMed ID: 15600476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of the largest aftershocks in branching models of triggered seismicity: theory of the universal Båth law.
    Saichev A; Sornette D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056127. PubMed ID: 16089622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models.
    Helmstetter A; Sornette D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061104. PubMed ID: 12513267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No Significant Effect of Coulomb Stress on the Gutenberg-Richter Law after the Landers Earthquake.
    Navas-Portella V; Jiménez A; Corral Á
    Sci Rep; 2020 Feb; 10(1):2901. PubMed ID: 32075986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence of finite-time singularities in epidemic models of rupture, earthquakes, and starquakes.
    Sornette D; Helmstetter A
    Phys Rev Lett; 2002 Oct; 89(15):158501. PubMed ID: 12366028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting the magnitude of the largest expected earthquake.
    Shcherbakov R; Zhuang J; Zöller G; Ogata Y
    Nat Commun; 2019 Sep; 10(1):4051. PubMed ID: 31492839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models.
    Ebrahimian H; Jalayer F
    Sci Rep; 2017 Aug; 7(1):9803. PubMed ID: 28852081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of foreshocks and aftershocks of the nonconservative self-organized critical Olami-Feder-Christensen model.
    Helmstetter A; Hergarten S; Sornette D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046120. PubMed ID: 15600473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of earthquake clustering models: criticality and branching ratios.
    Zhuang J; Werner MJ; Harte DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062109. PubMed ID: 24483388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of time and space correlations on earthquake magnitude.
    Lippiello E; de Arcangelis L; Godano C
    Phys Rev Lett; 2008 Jan; 100(3):038501. PubMed ID: 18233046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic neural network for earthquake magnitude prediction.
    Adeli H; Panakkat A
    Neural Netw; 2009 Sep; 22(7):1018-24. PubMed ID: 19502005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes.
    Corral A
    Phys Rev Lett; 2004 Mar; 92(10):108501. PubMed ID: 15089251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cluster Analysis of Seismicity in the Eastern Gulf of Corinth Based on a Waveform Template Matching Catalog.
    Kapetanidis V; Michas G; Spingos I; Kaviris G; Vallianatos F
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The debate on the earthquake magnitude correlations: a meta-analysis.
    Petrillo G; Zhuang J
    Sci Rep; 2022 Nov; 12(1):20683. PubMed ID: 36450895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible origin of memory in earthquakes: Real catalogs and an epidemic-type aftershock sequence model.
    Fan J; Zhou D; Shekhtman LM; Shapira A; Hofstetter R; Marzocchi W; Ashkenazy Y; Havlin S
    Phys Rev E; 2019 Apr; 99(4-1):042210. PubMed ID: 31108655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rare Occurrences of Non-cascading Foreshock Activity in Southern California.
    Moutote L; Marsan D; Lengliné O; Duputel Z
    Geophys Res Lett; 2021 Apr; 48(7):e2020GL091757. PubMed ID: 34219839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.